数学人教版八年级上册《11.1.1 三角形的边》教案设计

上传人:j**** 文档编号:99559282 上传时间:2019-09-19 格式:DOC 页数:3 大小:46.50KB
返回 下载 相关 举报
数学人教版八年级上册《11.1.1 三角形的边》教案设计_第1页
第1页 / 共3页
数学人教版八年级上册《11.1.1 三角形的边》教案设计_第2页
第2页 / 共3页
数学人教版八年级上册《11.1.1 三角形的边》教案设计_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

《数学人教版八年级上册《11.1.1 三角形的边》教案设计》由会员分享,可在线阅读,更多相关《数学人教版八年级上册《11.1.1 三角形的边》教案设计(3页珍藏版)》请在金锄头文库上搜索。

1、11.1 三角形的边教学设计教学目标1、会按三边的关系对三角形进行分类.2、理解三角形三边关系的定理及推论,并会初步应用它们来解决问题.学情分析 学生在小学已经对三角形有所了解,这对本节课的 学习是有帮助的,还应复习一下 不等式的有关知识。重点和难点三角形三边关系的定理和推论是重点;难点是三角形按边的关系进行分类的原则.教学过程设计一、三角形按边的关系分类教师拿出事先准备好的三个三角形,从边的大小关系角度来让学生观察它们有什么区别?教师注意引导学生从分类的原则不重不漏的角度考虑三个图形的关系:从而发现三角形按边的关系来分类只有以上三种情况.教师给三个图中的三角形分别命名,并让学生叙述等腰三角形

2、各部分的名称,启发学生总结三角形按边的相等关系分类如下:二、研究三角形三边的关系1、深入理解三角形的定义.让学生将手中三根木棍中最短的一根截去一小段,看是否还能首尾顺次相接,是否能组成三角形,连续进行此过程,得出两点:有两种情况不能构成三角形.当较短的两条线段之和小于第三条线段长时,三角线段未能首尾顺次相接;当较短的两条线段之和等于第三条线段长时,三条线段能首尾顺次相接,但未能构成三角形.不在同一条直线上的三条线段要能首尾相接构成三角形是有条件的,其中任意两条线段的长度之和必须大于第三条线段的长.2、猜想并证明三角形的三边关系定理.(1)继续刚才的问题,构成三角形后,三角形的三边满足什么关系?

3、得出猜想.(2)启发学生利用“两点之间,线段最短”来推导定理,并写出定理的符号表示方法.3、演绎推理,发现推论.师:三角形的两边之和大于第三边,那么两边之差呢?观察定理的数学表示式,如何由定理得出问题的答案?如图3-16,在ABC中,BCABAC,AB+BCAC, BC+ACAB, AC+ABBC. 推论1:三角形的两边之差小于第三边.结合三角形三边关系的定理及推论1,可从另一角度概括出第三边的范围.推论2:三角形的第三边大于另两边之差的绝对值,且小于另两边之和.(投影)练习3:一个三角形的两边a=3,b=6,能确定第三边c的长度码?能确定c的范围吗?若c为偶数,能求出c的值吗?答:|b-a|cb+a,3c1)教师板书(1)、(2)的格式,让学生练习其余题目.注意总结以下两点:(1)事实上,当三条线段两两互不相等时,只要三条线段中较小的两条之和大于第三条,就可以判断它们能构成三角形.(2)等腰三角形的一腰大于底边的一半.以4cm长的线段为底,1cm长的线段为腰,能否构成等腰三角形?以1cm长的段线为底,4cm长的线段为腰呢?通过此题,让学生总结出以下结论:已知等腰三角形的三边时,若最短边大于最长边的一半,则最长边可能为底或腰;否则最长边只可能为腰.

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 教学研究

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号