基于单片机饮水机温度控制系统的设计(同名22058)

上传人:F****n 文档编号:98816386 上传时间:2019-09-14 格式:DOC 页数:36 大小:5.26MB
返回 下载 相关 举报
基于单片机饮水机温度控制系统的设计(同名22058)_第1页
第1页 / 共36页
基于单片机饮水机温度控制系统的设计(同名22058)_第2页
第2页 / 共36页
基于单片机饮水机温度控制系统的设计(同名22058)_第3页
第3页 / 共36页
基于单片机饮水机温度控制系统的设计(同名22058)_第4页
第4页 / 共36页
基于单片机饮水机温度控制系统的设计(同名22058)_第5页
第5页 / 共36页
点击查看更多>>
资源描述

《基于单片机饮水机温度控制系统的设计(同名22058)》由会员分享,可在线阅读,更多相关《基于单片机饮水机温度控制系统的设计(同名22058)(36页珍藏版)》请在金锄头文库上搜索。

1、前 言温度控制是无论是在工业生产过程中,还是在日常生活中都起着非常重要的作用,过低的温度或过高的温度都会使水资源失去应有的作用,从而造成水资源的巨大浪费。特别是在当前全球水资源极度缺乏的情况下,我们更应该掌握好对水温的控制,把身边的水资源好好地利用起来。 本次设计为一个基于单片机的饮水机的温度控制系统,该系统可以实时检测饮水机水箱的水温,并且可以通过数码管显示饮水机水箱水温度数,可以通过键盘或开关选择制冷或加热,可以人为设置水的温度的上下限,如加热,当温度在设定的范围内时正常工作,当低于水温下限时控制加热器加热;如制冷,当温度高于水温上限时控制压缩机制冷,温度检测范围095,精度1,当温度超过

2、设定值时具有示警功能。第1章 电路设计1.1 单片机最小系统设计 单片机最小系统如图1.0所示,由主控器AT89C51、时钟电路和复位电路三部分组成。单片机AT89C51作为核心控制器控制着整个系统的工作,而时钟电路负责产生单片机工作所必需的时钟信号,复位电路使得单片机能够正常、有序、稳定地工作。图1.0 单片机最小系统1.1.1 单片机选择AT89C51是一种带4K字节闪存可编程可擦除只读存储器(FPEROMFlash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微处理器,俗称单片机。AT89C2051是一种带2K字节闪

3、存可编程可擦除只读存储器的单片机。单片机的可擦除只读存储器可以反复擦除1000次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。AT89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。其管脚图如图1.1所示。图1.1 AT89C51管脚图AT89C51的管脚说明: VCC:供电电压。本设计供电电压为+5V。GND:接地。 P0口:P0口为一个8位漏极开路双向I/O口,每个管脚可吸收8个TTL门电

4、流。当P1口的管脚第一次写“1”时,被定义为高阻输入。P0口能够作为外部程序数据存储器,它可以被定义为数据/地址的低八位。在Flash编程时,P0口作为原码输入口,当Flash进行校验时,P0输出原码,此时P0外部必须被拉高。 P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4个TTL门电流。P1口管脚写入“1”后,被内部上拉为高电平,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为低八位地址接收。 P2口:P2口为一个带内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2

5、口被写“1”时,其管脚被上拉电阻拉高,且作为输入。P2口的管脚被外部下拉为低电平时,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉电阻,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在Flash编程和校验时接收高八位地址信号和控制信号。P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流,这是由于上拉的缘故。RST:复

6、位输入端。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。 ALE:当访问外部存储器时,地址锁存于锁存地址的低位字节。在FLASH编程期间,该引脚用于输入编程脉冲。在平时,ALE端口以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而,要注意的是:每当其用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出,可将SFR8EH地址置0。此时, ALE只有在执行MOVX,MOVC指令时ALE才起作用。PSEN:外部程序存储器的选通信号。在由外部程序存储器取指令期间,每个机器周期/PSEN两次有效。但在访问外部数据存储器时

7、,这两次有效的/PSEN信号将不出现。/EA:/EA功能为内外程序存储器选择控制端。当/EA保持低电平时,单片机访问外部程序存储器。当/EA端保持高电平时,单片机访问内部程序存储器。XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入端。XTAL2:来自反向振荡器的输出端。鉴于AT89C51单片机所具有的特性及本设计控制的复杂性和兼顾显示、报警、键盘控制等较高要求,本设计选用AT89C51单片机作为中心控制器。1.1.2 时钟电路时钟电路用于产生AT89C51单片机工作时所必需的时钟信号。其电路与AT89C51的连接如图2.1所示。AT89C51单片机本身就是一个复杂的同步时序电路,为了保

8、证同步工作方式的实现,AT89C51单片机应在唯一的时钟信号控制下,严格按时序执行指令进行工作,而时序所研究的是指令执行中各个信号的关系。在执行指令时,CPU首先要到指令存储器中取出需要执行的指令操作码,然后译码,并由时序电路产生一系列控制信号去完成指令所规定的操作。CPU发出的时序信号有两种,一是用于片内对各个功能部件的控制。另一种是对片外存储器或I/O口的控制,这种时序对于分析、设计硬件接口电路至关重要。这也是单片机应用设计者最关心的问题。时钟是单片机的心脏,单片机各个功能部件的运行都是以时钟频率为基准,有条不紊地工作。因此,时钟频率直接影响单片机的速度,时钟电路的质量也直接影响单片机系统

9、的稳定性。AT89C51单片机内部有一个用于构成振荡器的高增益反相放大器,该高增益反相放大器的输入端为芯片引脚X1,输出引脚X2。这两个引脚跨接石英晶体振荡器和微调电容,就构成一个稳定的自激振荡器。虽然AT89C51有内部振荡电路,但要形成时钟,必须外接元件。外接晶体以及X1和X2构成并联谐振电路。电容的大小会影响振荡器频率的高低、振荡器的稳定性、起振的快速性和温度的稳定性。除使用晶体振荡器外,如对时钟频率要求不高,还可以用陶瓷振荡器来代替。电路中的电容容值通常选择为30PF左右,本电路选择的是20PF,这并不影响系统的工作和控制的结果。晶体的振荡的频率的范围通常是在1.2MH到12MH之间。

10、晶体的频率越高,则系统的时钟频率就越高,单片机的运行速度也就越快。但反过来运行速度越快对存储器的速度要求就越高,对印刷电路板的工艺要求也高。AT89C51单片机常选择振荡频率6MH或12MH的石英晶体,随着集成电路制造工艺技术的发展,单片机的时钟频率也在逐步提高,现在的高速单片机芯片的时钟频率已经达到40MH。考虑到本设计所用的各种器件对时钟频率的要求及整体电路的简洁性,本设计选用的是振荡频率为6MH的石英晶体。1.1.3 复位电路AT89C51的复位是由外部的复位电路来实现的。单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却

11、出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。因此选用一个适合本系统的复位电路极其重要。常用的复位电路有四种方式:(1)上电复位电路(2)按键复位电路(3)脉冲复位电路(4)兼有上电复位与按键复位的电路。由于考虑到结构和成本等原因,在很多设计里面,复位电路通常采用上电复位和按键复位两种。根据本系统的特性,决定选用最简单的上电复位电路。上电复位是通过外部复位电路的电容充电来实现的。只要Vcc的上升时间不超过10ms,就可以实现自动上电复位。当时钟频率选用6MH,电容C选用22mF,电阻R选用1KW。该复位电路工作原理为:在通电瞬间,在RC电路充电过程中,RST端出

12、现正脉冲,保证RST引脚出现10 ms以上稳定的高电平,从而使单片机复位。1.2 温度采集电路设计本设计中的温度采集系统由DS18B20传感器负责。其型号如图1.2.1所示:DS18B20工作原理为DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s 减为750ms。 DS18B20测温原理如图3所示。图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振 随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在55所对应的一个基数值。计数器1

13、对 低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重 新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即 为所测温度。图3中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。 DS18B20内部结构图如图1.2.2所示: 1.2.2 DS18B20内部结构2.3 A/D转换电路设计A/D转换部分电路的功能主要是将采集部分采集来的模拟信号转换成数字信号,然后输送到单片机进行数据处理。主要器件有ADC0809、74

14、LS02、74S74等。ADC0809与AT89C51连接电路如图2.5所示。图2.5 A/D转换电路A/D转换器ADC0809共有八路模拟输入端,由于本设计温度采集只有两路,因此只用到两路模拟输入端,其输入通道为IN0、IN1。这两个通道的数据分别是温度采集电路的输出信号V01、V02,也就是转换为电压值的饮水机两个水箱水的温度值。选择这两个通道需要通过设置ADC0809的ADDA、B、C的值,因为它对应的是八路模拟信号,而本系统只有两路模拟信号输入,因此,只需要将低位ADDA连到AT89C51的P2.2口,并根据P2.2口的电压是低电平或高电平来选择要检测哪个通道,当ADDA值为0时选的是

15、IN0通道,当ADDA为1时选的是IN1 通道。而ADDB、ADDC只需接地即可。2.3.1 A/D转换器选择A/D转换器的功能是将连续变化的模拟量转换成一个离散的数字量。每一个数字量都是数字代码的按位组合,每一位数字代码都是一定的“权”,对应一定大小的模拟量。为了将数字量转换成模拟量应该将其每一位都转换成响应的模拟量,然后求和即可得到与数字量成正比的模拟量。目前,市面上有很多类型的A/D转换器,如:ADC0804、ADC0809、AD574等,根据本设计控制的特点,选用ADC0809作为A/D转换器。ADC0809八位逐次逼近式A/D转换器是一种单片CMOS器件,包括8位的模/数转化器,8通

16、道多路转换器和与微处理器兼容的控制逻辑。8通道多路转换器能直接连通8个单端模拟信号中的任何一个。片内带有锁存功能的8路模拟多路开关,可以对8路05V的输入模拟电压信号分时进行转换,片内具有多路开关的地址译码和锁存电路、比较器、256RT型网络、树状电子开关、逐次逼近寄存器SAR、控制与时序电路等。输出具有TTL三态锁存缓冲器,可以直接连接到单片机数据总线上。1. ADC0809功能如下:(1)分辨率为8位。(2)最大不可调误差小于1LSB。(3)单一+5V供电,模拟输入范围05V(4)具有锁存控制的8路模拟开关。(5)可锁存三态输出,输出与TTL兼容。(6)功耗为15mW。(7)不必进行零点和满度调整。(8)转换速度取

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 教学/培训

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号