利用导数解决生活中的优化问题.doc

上传人:F****n 文档编号:98634941 上传时间:2019-09-12 格式:DOC 页数:5 大小:367KB
返回 下载 相关 举报
利用导数解决生活中的优化问题.doc_第1页
第1页 / 共5页
利用导数解决生活中的优化问题.doc_第2页
第2页 / 共5页
利用导数解决生活中的优化问题.doc_第3页
第3页 / 共5页
利用导数解决生活中的优化问题.doc_第4页
第4页 / 共5页
利用导数解决生活中的优化问题.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《利用导数解决生活中的优化问题.doc》由会员分享,可在线阅读,更多相关《利用导数解决生活中的优化问题.doc(5页珍藏版)》请在金锄头文库上搜索。

1、利用导数解决生活中的优化问题导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。一解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具二利用导数解决优化问题的基本思路:建立数学模型解决数学模型作答用函数表示的数学问题优化问题用导数解决数学问题优化问题的答

2、案三、应用举例例1(体积最大问题)用长为18m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?解:设长方体的宽为,则长为,高为故长方体的体积为从而令,解得(舍去)或,因此当时,;当时,故在处取得极大值,并且这个极大值就是的最大值从而最大体积,此时长方体的长为,高为答:当长方体的长为,宽为,高为时,体积最大,最大体积为点评:用导数来解决实际问题时,一般首确定自变量,选定了自变量,要搞清自变量的范围,再列出关系式,对关系式进行求导,最后求出最值来。例2(帐篷设计问题)请您设计一个帐篷。它下部的形状是高为1m的正六棱柱,上部的形

3、状是侧棱长为3m的正六棱锥。试问当帐篷的顶点O到底面中心的距离为多少时,帐篷的体积最大?解:设OO1为x m,则由题设可得正六棱锥底面边长为(单位:m)于是底面正六边形的面积为: m2帐篷的体积为 m3求导数,得令解得x=-2(不合题意,舍去),x=2.当1x2时,,V(x)为增函数;当2x4时,,V(x)为减函数。所以当x=2时,V(x)最大。即当OO1为2m时,帐篷的体积最大。点评:本小题主要考查利用导数研究函数的最大值和最小值的基础知识,以及运用数学知识解决实际问题的能力。求解关键是设法构建函数关系,将实际问题如何转化为数学问题,再利用导数求解.例3(瞬时速度问题)若已知某质点的运动方程

4、为S(t)=at,要使在t0, +上的每一时刻的瞬时速度的绝对值都不大于1,求实数a的取值范围。解: S(t)= . | S(t)|1,1,即 当t0,+时,()min=1,a1.当t+时,且连续递增,所有值都小于1,a0. 故实数a的取值范围是0a1。点评:质点运动方程S(t)的导数S(t)的物理意义就是质点在时刻t的瞬时速度. 利用导数的物理意义列出不等式,根据不等式在t0, +上恒成立,求出a的取值范围.例4(容器的容积最大)用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边形翻转角,再焊接而成问该容器的高为多少时,容器的容积最大?最大容积

5、是多少?解:设容器高为xcm,容器的容积为cm,则= x(902x)(482x) = 4x276x4320x (0x24求=12x552x4320 = 12(x46x360) = 12(x10)(x36)令= 0,得x= 10,x= 36 (舍去),当0x10 时,0,那么为增函数;当10x24 时,0,那么为减函数因此,在定义域(0,24内,函数只有当x = 10时取得最大值,其最大值为:= 10(9020)(4820) = 19600(cm)所以当容器的高为10cm时,容器的容积最大,最大容积为19600cm点评:函数的应用题主要存在于用料最省、造价最低、利润最大等最优化问题中,由于函数的

6、应用性问题是一种最广泛,实用性又极强的问题,并且利用导数运算工具简化了运算量,所以函数应用题已成为高考的一大热点例5(水库的蓄水量问题)水库的蓄水量随时间而变化,现用表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于的近似函数关系式为()该水库的蓄求量小于50的时期称为枯水期.以表示第1月份(),同一年内哪几个月份是枯水期?()求一年内该水库的最大蓄水量(取计算).解:()当时,化简得,解得,或,又,故.当时,化简得,解得,又,故.综合得,或;故知枯水期为1月,2月,3月,11月,12月共5个月.()()知:V(t)的最大值只能在(4,10)内达到.由V(t)

7、= 令V(t)=0,解得t=8(t=-2舍去).当t变化时,V(t) 与V (t)的变化情况如下表:t(4,8)8(8,10)V(t)+0-V(t)极大值由上表,V(t)在t8时取得最大值V(8)8e2+50-108.52(亿立方米).故知一年内该水库的最大蓄水量是108.32亿立方米点评:本题以水库蓄水为背景,考查了函数、导数和不等式等基本知识,同时还考查了运用导数知识求最值和综合运用数学知识解决生产生活实际问题的能力. 例6(磁盘的最大存储量问题)计算机把数据存储在磁盘上。磁盘是带有磁性介质的圆盘,并有操作系统将其格式化成磁道和扇区。磁道是指不同半径所构成的同心轨道,扇区是指被同心角分割所

8、成的扇形区域。磁道上的定长弧段可作为基本存储单元,根据其磁化与否可分别记录数据0或1,这个基本单元通常被称为比特(bit)。为了保障磁盘的分辨率,磁道之间的宽度必需大于,每比特所占用的磁道长度不得小于。为了数据检索便利,磁盘格式化时要求所有磁道要具有相同的比特数。问题:现有一张半径为的磁盘,它的存储区是半径介于与之间的环形区域(1)是不是越小,磁盘的存储量越大?(2)为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)?解:由题意知:存储量=磁道数每磁道的比特数。设存储区的半径介于与R之间,由于磁道之间的宽度必需大于,且最外面的磁道不存储任何信息,故磁道数最多可达。由于每条磁道上的比特数

9、相同,为获得最大存储量,最内一条磁道必须装满,即每条磁道上的比特数可达。所以,磁盘总存储量.(1)它是一个关于的二次函数,从函数解析式上可以判断,不是越小,磁盘的存储量越大(2)为求的最大值,计算,令,解得,当时,;当时,因此时,磁盘具有最大存储量。此时最大存储量为。例7(饮料瓶大小对饮料公司利润的影响问题)(1)你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些?(2)是不是饮料瓶越大,饮料公司的利润越大?【背景知识】:某制造商制造并出售球型瓶装的某种饮料瓶子的制造成本是分,其中 是瓶子的半径,单位是厘米。已知每出售1 mL的饮料,制造商可获利 0.2 分,且制造商能制作的瓶子的最大

10、半径为 6cm问题:()瓶子的半径多大时,能使每瓶饮料的利润最大?()瓶子的半径多大时,每瓶的利润最小?解:由于瓶子的半径为,所以每瓶饮料的利润是令 解得 (舍去)当时,;当时,当半径时,它表示单调递增,即半径越大,利润越高;当半径时, 它表示单调递减,即半径越大,利润越低(1)半径为cm 时,利润最小,这时,表示此种瓶内饮料的利润还不够瓶子的成本,此时利润是负值(2)半径为cm时,利润最大换一个角度:如果我们不用导数工具,直接从函数的图像上观察,会有什么发现?可根据单调区间画出函数的大致图像,由图像知:当时,即瓶子的半径为3cm时,饮料的利润与饮料瓶的成本恰好相等;当时,利润才为正值当时,为减函数,其实际意义为:瓶子的半径小于2cm时,瓶子的半径越大,利润越小,半径为cm 时,利润最小涟江为区内地表水的主要排水通道,隧道设计标高高于最低排水基准面,隧道区山脊内沟谷多为季节性冲沟,主要由大气降水补给,水量小,受季节影响明显,地表水不发育,地表水对隧道施工及运营无影响。

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 教学/培训

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号