关于叶片的知识

上传人:F****n 文档编号:98581805 上传时间:2019-09-12 格式:DOC 页数:10 大小:71.50KB
返回 下载 相关 举报
关于叶片的知识_第1页
第1页 / 共10页
关于叶片的知识_第2页
第2页 / 共10页
关于叶片的知识_第3页
第3页 / 共10页
关于叶片的知识_第4页
第4页 / 共10页
关于叶片的知识_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《关于叶片的知识》由会员分享,可在线阅读,更多相关《关于叶片的知识(10页珍藏版)》请在金锄头文库上搜索。

1、叶片是风力发电机组有效捕获风能的关键部件。在发电机功率确定的条件下,如何提高发电效率,以获得更大的风能,一直是风力发电追求的目标,而捕风能力的提高与叶片的形状、长度和面积有着密切的关系,叶片尺寸的大小则主要依赖于制造叶片的材料。叶片的材料越轻、强度和刚度越高,叶片抵御载荷的能力就越强,叶片就可以做得越大,它的捕风能力也就越强。因此,轻质高强、耐久性好的复合材料成为目前大型风力发电叶片的首选材料。 无论是陆地风力发电,还是海上风力发电,每千瓦时的发电成本均随着发电机单机容量的增加而下降,发电装备的大型化已经成为风力发电的发展趋势。近几年,随着全球风力发电市场的逐渐成熟,大型风力发电机相继出现。目

2、前商业化风力发电所用的电机容量一般为1.52.0MW,与之配套的复合材料叶片长度大约3040米。据报道,现今世界上最大的风力发电机的装机容量为5MW,旋转直径可达126.3米。丹麦的LM公司为此装备配套研制了61.5米长的复合材料叶片,单片叶片的重量接近18吨,成为世界最大的复合材料叶片“巨人”。这一实例成功地体现了材料、结构和工艺的三者的完美结合。 在复合材料风力发电叶片的研究开发过程中,德国、丹麦、美国等风能资源利用较好的国家针对大型叶片的材料体系、外形设计、结构设计、制造工艺、质量检验、在线实时监测和废弃物处理作了大量的研究开发工作,并取得了丰硕的成果。设计者和制造商已经完全可以针对不同

3、的地区风力发电的需要,选择最佳的设计方案和制造技术,生产适合不同需求的复合材料风力发电叶片。 目前正在服役的风力发电叶片多为复合材料叶片。这些叶片基本上是由聚酯树脂、乙烯基树脂和环氧树脂等热固性基体树脂与E一玻璃纤维、s一玻璃纤维、碳纤维等增强材料,通过手工铺放或树脂注入等成型工艺复合而成,以满足不同风场的使用要求。由于玻璃纤维的价格仅为碳纤维价格的1/10左右,目前的叶片制造采用的增强材料仍以玻璃纤维为主。例如,在54米长的大型复合材料叶片制造中依然以玻璃纤维为增强材料,最轻的叶片重量仅为13.4吨。随着超大型叶片的出现,叶片长度不断增加,叶片对增强材料的强度和刚度等性能也提出了新的要求,玻

4、璃纤维在大型复合材料叶片制造中逐渐显现出性能方面的不足。LM公司在制造615米的大型复合材料叶片时,为保证叶片能够安全地承担风、温度等外界载荷,单纯的玻璃纤维增强材料已经很难满足叶片对强度和刚度的要求。因此,该叶片采用了玻璃纤维/碳纤维混杂复合材料结构,尤其是在翼缘等对材料强度和刚度要求较高的部位,则使用碳纤维作为增强材料。这样,不仅可以提高叶片的承载能力,由于碳纤维具有导电性,也可以有效地避免雷击对叶片造成损伤。 风力发电机组在工作过程中,复合材料叶片不仅要承受强大的风载荷,还要经受气体冲刷、砂石粒子冲击、以及强烈的紫外线照射等外界的侵蚀。为了充分发挥增强材料的增强作用,提高复合材料叶片的承

5、担载荷、耐腐蚀和耐冲刷等项性能,LM公司等复合材料叶片的制造商们还对树脂基体系统进行了精心设计和改进。采用性能优异的环氧树脂代替不饱和聚酯树脂,改善了玻璃纤维/树脂界面的粘结性能,提高了叶片的承载能力,扩大了玻璃纤维在大型叶片中的应用范围。为提高复合材料叶片在恶劣工作环境中的长期使用性能,sP公司专门研究开发出耐紫外线辐照的新型环氧树脂系统,以满足风力发电叶片耐久性的要求。 在风力发电的初期阶段,由于发电机的功率较小,需要的复合材料叶片尺寸也比较小,叶片质量分布的均匀性对发电机和塔座的影响不十分显现;而且,当时人们对开模成型工艺时苯乙烯挥发给大气环境造成的污染,对操作人员造成的身体危害并未引起

6、足够的认识。因此,最初的小型复合材料叶片制造基本采用简单易行的手糊成型工艺。随着风力发电机功率的不断提高,安装发电机的塔座和捕捉风能的复合材料叶片做的越来越大。 作者:124.237.160.*2009-2-3 19:53 回复此发言 2回复:关于风电无聊的勿进 为了保证发电机运行平稳和塔座安全,不仅要求叶片的质量轻,也要求叶片的质量分布必须均匀、外形尺寸精度控制准确、长期使用性能可靠。若要满足上述要求,需要相应的成型工艺来保证。另外,复合材料制造过程中苯乙烯挥发对环境和操作人员产生的不良影响也越来越引起人们的重视,一些发达国家已经制定出相应的法规,我国也对生产过程中产生的有害挥发物有明确的限

7、制规定。因此,复合材料成型工艺随之发生变化,逐渐由开模工艺向闭模工艺改进,以减少苯乙烯自然挥发对环境和人体的危害。 在大型复合材料叶片制造过程中也反映出这一成型工艺的变化:首先,叶片的制造工艺由手糊成型向着湿法铺放工艺的转变,增强材料的现场浸渍逐渐转向预先浸渍,开始采用玻璃纤维/聚酯或玻璃纤维/环氧预浸料,大幅度的降低了成型过程中苯乙烯的挥发。这样,不仅树脂含量容易精确控制,保证了复合材料叶片的质量分布均匀,而且增强材料铺设角度准确,可以有效地发挥增强材料的性能,提高复合材料的承载能力。其次,开模成型工艺向着闭模工艺发展,为了改善成型环境,减少有害气体的挥发,进一步提高叶片的质量稳定性,大型复

8、合材料叶片的制造开始引入树脂注人工艺技术。在树脂注人工艺中,树脂基体在真空压力的作用下,可以更完全的浸渍增强材料,不仅能够准确地控制树脂含量,充分发挥增强材料的作用,提高复合材料叶片的承载能力,而且无需大型专用设备,制造成本较低。 与此同时,叶片的制造模具也在悄悄地发生变化。大型复合材料叶片的外形尺寸与其制造模具有着极其密切的关系。为保证复合材料叶片设计外形和尺寸精度,叶片长度越长,成型时对模具刚度和强度的要求就越高,模具的重量和成本也会大幅度地提高。为了降低模具成本,减轻模具重量,大型复合材料叶片的制造模具也逐渐由金属模具向着复合材料模具转变,这也意味着复合材料叶片可以做得更长。另外,由于模

9、具与叶片采用了相同的材料,模具材料的热膨胀系数与叶片材料基本相同,制造出的复合材料叶片的精度和尺寸稳定性均优于金属模具制造的叶片产品。 此外,随着计算机技术和自动控制技术应用领域的扩大,大型复合材料叶片的制造技术也在不断的进步。LM公司将机器人技术用于大型叶片的纤维铺覆和粘结,并将计算机技术应用于工艺过程的实施监控和数据记录,为用户提供可追溯的资料作为可靠性保证的依据。 选择最佳的材料体系和制造工艺,制造出质量最好的复合材料叶片,以满足风力发电快速发展的需求,未来的成型工艺将给复合材料叶片制造提供最优的实施手段。 以最小的叶片重量获得最大的叶片面积,使得叶片具有更高的捕风能力,叶片的优化设计显

10、得十分重要,尤其是符合空气动力学要求的大型复合材料叶片的最佳外形设计和结构优化设计的重要性尤为突出,它是实现叶片的材料有效结合的软件支撑。另外,计算机仿真技术的应用也使得叶片的结构与层合板设计更加细化,有利的支持了最佳工艺参数的确定。 早在1920年,德国的物理学家舢bertBetz就对风力发电叶片进行过详细的计算。基于当时的计算条件和对风力发电叶片的认识,Bez在叶片计算时采用了一些假设条件。随着计算机技术发展,计算手段的显著提高,风力发电技术的快速发展,人们对风力发电叶片的认识和理解也在逐步深人。尤其是近十年来,经过研究人员对风力发电叶片进行的多次现场载荷、声音和动力测量以后,发现叶片的理

11、论预测值与实际记录值有较大的偏离。这可能是由于过多地相信了风洞试验,而对叶片服役期间可能遇到的较强动态环境和湍流条件考虑不足造成的。因此,一些相关人员对当时的叶片计算采用的假设条件提出了质疑。 流体动力学计算和软件的改进使得研究人员能够更精确地模拟叶片实际的受力状态。在此基础上,进一步改善叶片的空气动力学特性,即使叶片在旋转速度降低5%的情况下,捕风能力仍可以提高5%;随着叶片旋转速度的降低,叶片运行的噪音大约可以降低3dB。同时,较低的叶片旋转速度要求的运行载荷也较低,旋转直径可以相应的增加。在此项研究的基础上,德国的Eercon公司将风力发电机的旋转直径由30米增加到33米,复合材料叶片也

12、随着相应的增加。由于叶片长度的增加,叶片转动时扫过的面积增大,捕风能力大约提高了25%。Enercon公司还对33米叶片进行了空气动力试验,经过精确的测定,叶片的实际气动效率为56%,比按照Betz计算的最大气动效率低约34个百分点。为此,该公司对大型叶片外形型面和结构都进行了必要的改进:包括为了抑制生成扰流和漩涡,在叶片端部安装“小翼”;为改善和提高涡轮发电机主舱附近的捕风能力,对叶片根茎进行重新改进,缩小叶片的外形截面,增加叶径长度;对叶片顶部与根部之间的型面进行优化设计。在此基础上,Enercon公司开发出旋转直径7l米的2MW风力发电机组,改进后叶片根部的捕风能力得以提高。Eercon

13、公司在45MW风力发电机设计中继续采用此项技术,旋转直径为112米的叶片端部仍安装的倾斜“小翼”,使得叶片单片的运行噪音小于3个叶片(旋转直径为66米)运行时产生的噪音。 作者:124.237.160.*2009-2-3 19:53 回复此发言 3回复:关于风电无聊的勿进 丹麦的LM公司在61.5米复合材料叶片样机的设计中对其叶片根部固定进行了改进,尤其是固定螺栓与螺栓孔周围区域。这样,在保持现有根部直径的情况下,能够支撑的叶片长度可比改进前增加20%。另外,LM公司的叶片预弯曲专有技术也可以进一步降低叶片重量和提高产能。 随着计算机技术和控制技术的进步,近年来,大型复合材料的叶片也向着智能化

14、发展。在最新一代的Enercon叶片中开始采用叶片自动监测和控制系统,监测系统能够将叶片运行状态下的数百个电子信息自动地传递给叶片的控制系统,计算机管理系统每个月都会报告叶片的运行情况、早期损伤情况,以利于使用者能够对损伤叶片进行及时地修补。 LM公司将光纤控制技术用于制造智能复合材料叶片。在大型叶片制造中,尤其是近海风场用的大型风力发电机,由于风场的气候条件恶劣,监测和维护困难,对外界温度、叶片裂纹、雷击等对叶片损伤的早期预警显得十分重要。为了能够实现对复合材料叶片的实时监控,LM公司将光纤监控技术用于复合材料叶片的制造,开发出具有智能功能的复合材料叶片。在制造大型复合材料叶片时,LM公司将

15、光纤传感器埋设和固定于复合材料内部。当这种智能复合材料叶片工作时,光纤传感器就会将叶片工作时的状态实时反映给数据采集和处理系统,相关数据经过处理后,将其反馈给风力发电机的控制系统。一旦叶片所承受外界载荷(温度、风速、风载等)超过设计载荷、叶片主体产生裂纹、外界雷击等可能对叶片造成损伤时,叶片的监控系统就会发出早期预警信号,此时才需要对叶片进行必要的保养和维护工作,可以大大降低叶片的日常维护费用。目前,这项工作正在模拟的外界环境中进行20年服役期的可靠性加速试验。LM公司目前也将此系统安装在40米的叶片上进行试验,不久将在61.5米的叶片上进行试验。 目前使用的复合材料叶片属于热固性复合材料,很

16、难自然降解。废弃物处理一般采用填埋或者燃烧等方法处理,基本上不再重新利用。面对日益突出的复合材料废弃物对环境造成的危害,一些制造商开始探讨复合材料的回收和再利用技术。 到2004年底,全世界新增的风力发电能力接近8GW,风力发电装机的总容量已达47.4GW,正在服役的风力发电叶片已达数千片。在未来十年间,仍以10%以上的增长速度快速发展。复合材料风力发电叶片的使用寿命一般为2030年。虽然最初的叶片为木质结构,但绝大多数的服役叶片仍为复合材料结构。在未来的十几年间,这些叶片将陆续退役,退役后叶片如何处理也将成为材料科学家和环保工作者必须面对的现实问题。以利用风能发电最好的德国为例,目前德国的风力发电量约占全年总发电量的6%。如果德国实现由风力发电来提供25%的电力需求的发展目标,则该国需要安装7500个超大

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 教学/培训

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号