低应变法规范

上传人:n**** 文档编号:96123007 上传时间:2019-08-24 格式:DOC 页数:24 大小:914.50KB
返回 下载 相关 举报
低应变法规范_第1页
第1页 / 共24页
低应变法规范_第2页
第2页 / 共24页
低应变法规范_第3页
第3页 / 共24页
低应变法规范_第4页
第4页 / 共24页
低应变法规范_第5页
第5页 / 共24页
点击查看更多>>
资源描述

《低应变法规范》由会员分享,可在线阅读,更多相关《低应变法规范(24页珍藏版)》请在金锄头文库上搜索。

1、低应变法8.1 适用范围8.1.1 本方法适用于检测混凝土桩的桩身完整性,判定桩身缺陷的程度及位置。目前国内外普遍采用瞬态冲击方式,通过实测桩顶加速度或速度响应时域曲线,籍一维波动理论分析来判定基桩的桩身完整性,这种方法称之为反射波法(或瞬态时域分析法)。所用动测仪器一般都具有傅立叶变换功能,可通过速度幅频曲线辅助分析判定桩身完整性,即所谓瞬态频域分析法;也有瞬态机械阻抗法。当然,采用稳态激振方式直接测得导纳曲线,则称之为稳态机械阻抗法。无论瞬态激振的时域分析还是瞬态或稳态激振的频域分析,只是习惯上从波动理论或振动理论两个不同角度去分析,数学上忽略截断和泄漏误差时,时域信号和频域信号可通过傅立

2、叶变换建立对应关系。所以,当桩的边界和初始条件相同时,时域和频域分析结果应殊途同归。综上所述,考虑到目前国内外使用方法的普遍程度和可操作性,本规范将上述方法合并编写并统称为低应变(动测)法。低应变法的理论基础以一维线弹性杆件模型为依据。因此受检桩的长细比、瞬态激励脉冲有效高频分量的波长与桩的横向尺寸之比均宜大于5,设计桩身截面宜基本规则。另外,一维理论要求应力波在桩身中传播时平截面假设成立,所以,对薄壁钢管桩和类似于H型钢桩的异型桩,本方法不适用。本方法对桩身缺陷程度只做定性判定,尽管利用实测曲线拟合法分析能给出定量的结果,但由于桩的尺寸效应、测试系统的幅频相频响应,高频波的弥散、滤波等造成的

3、实测波形畸变,以及桩侧土阻尼、土阻力和桩身阻尼的耦合影响,曲线拟合法还不能达到精确定量的程度。对于桩身不同类型的缺陷,低应变测试信号中主要反映出桩身阻抗减小的信息,缺陷性质往往较难区分。例如,混凝土灌注桩出现的缩颈与局部松散、夹泥、空洞等,只凭测试信号就很难区分。因此,对缺陷类型进行判定,应结合地质、施工情况综合分析,或采取钻芯、声波透射等其他方法。桩身完整性 pi1e integrity反映桩身截面尺寸相对变化、桩身材料密实性和连续性的综合定性指标。桩身完整性是一个综合定性指标,而非严格的定量指标。其类别是按缺陷对桩身结构承载力的影响程度划分的。这里有两点需要说明:1 连续性包涵了桩长不够的

4、情况。因动测法只能估算桩长,桩长明显偏短时,给出断桩的结论是正常的。而钻芯法则不同,可准确测定桩长。2 作为完整性定性指标之一的桩身截面尺寸,由于定义为 “相对变化”,所以先要确定一个相对衡量尺度。(按设计桩径) 桩身缺陷 pile defects使桩身完整性恶化,在一定程度上引起桩身结构强度和耐久性降低的桩身断裂、裂缝、缩颈、夹泥(杂物)、空洞、蜂窝、松散等现象的统称。桩身缺陷有三个指标,即位置、类型(性质)和程度。动测法检测时,不论缺陷的类型如何,其综合表现均为桩的阻抗变小,即完整性动力检测中分析的仅是阻抗变化,阻抗的变小可能是任何一种或多种缺陷类型及其程度大小的表现。因此,仅根据阻抗的变

5、小不能判断缺陷的具体类型,如有必要,应结合地质资料、桩型、成桩工艺和施工记录等进行综合判断。对于扩径而表现出的阻抗变大,应在分析判定时予以说明,因扩径对桩的承载力有利,不应作为缺陷考虑。8.1.2 本方法的有效检测桩长范围应通过现场试验确定。由于受桩周土约束、激振能量、桩身材料阻尼和桩身截面阻抗变化等因素的影响,应力波从桩顶传至桩底再从桩底反射回桩顶的传播为一能量和幅值逐渐衰减过程。若桩过长(或长径比较大)或桩身截面阻抗多变或变幅较大,往往应力波尚未反射回桩顶甚至尚未传到桩底,其能量已完全衰减或提前反射,致使仪器测不到桩底反射信号,而无法评定整根桩的完整性。在我国,若排除其他条件差异而只考虑各

6、地区地质条件差异时,桩的有效检测长度主要受桩土刚度比大小的制约。因各地提出的有效检测范围变化很大,如长径比3050。桩长3050m不等,故本条未规定有效检测长度的控制范围。具体工程的有效检测桩长,应通过现场试验,依据能否识别桩底反射信号,确定该方法是否适用。对于最大有效检测深度小于实际桩长的超长桩检测,尽管测不到桩底反射信号,但若有效检测长度范围内存在缺陷,则实测信号中必有缺陷反射信号。因此,低应变方法仍可用于查明有效检测长度范围内是否存在缺陷。8.2 仪器设备8.2.1 检测仪器的主要技术性能指标应符合现行行业标准基桩动测仪JG/T 3055的有关规定,且应具有信号显示、储存和处理分析功能。

7、我省大多使用的仪器为武汉岩海公司生产的桩基动测仪。8.2.2 瞬态激振设备应包括能激发宽脉冲和窄脉冲的力锤和锤垫;力锤可装有力传感器;稳态激振设备应包括激振力可调、扫频范围为102000Hz的电磁式稳态激振器。目前激振设备普遍使用的是力锤、力棒,其锤头或锤垫多选用工程塑料、高强尼龙、铝、铜、铁、橡皮垫等材料,锤的质量为几百克至几十千克不等。8.3 现场检测8.3.1 受检桩应符合下列规定:1 桩身强度应符合本规范第3.2.6条第1 款的规定。当采用低应变法或声波透射法检测时,受检桩混凝土强度至少达到设计强度的70%,且不小于15MPa。2 桩头的材质、强度、截面尺寸应与桩身基本等同。桩顶条件和

8、桩头处理好坏直接影响测试信号的质量。因此,要求受检桩桩顶的混凝土质量、截面尺寸应与桩身设计条件基本等同。3 桩顶面应平整、密实,并与桩轴线基本垂直。灌注桩应凿去桩顶浮浆或松散、破损部分,并露出坚硬的混凝土表面;桩顶表面应平整干净且无积水;妨碍正常测试的桩顶外露主筋应割掉。8.3.2 测试参数设定应符合下列规定:1 时域信号记录的时间段长度应在2L/c时刻后延续不少于5ms ;幅频信号分析的频率范围上限不应小于2000Hz。从时域波形中找到桩底反射位置,仅仅是确定了桩底反射的时间,根据T2L/c,只有已知桩长L才能计算波速c,或已知波速c计算桩长L因此,桩长参数应以实际记录的施工桩长为依据,按测

9、点至桩底的距离设定。测试前桩身波速可根据本地区同类桩型的测试值初步设定,实际分析过程中应按由桩长计算的波速重新设定或按8.4.1条确定的波速平均值c设定。2 设定桩长应为桩顶测点至桩底的施工桩长,设定桩身截面积应为施工截面积。3 桩身波速可根据本地区同类型桩的测试值初步设定。4 采样时间间隔或采样频率应根据桩长、桩身波速和频域分辨率合理选择;时域信号采样点数不宜少于1024点。5 传感器的设定值应按计量检定结果设定。8.3.3 测量传感器安装和激振操作应符合下列规定:1 传感器安装应与桩顶面垂直;用耦合剂粘结时,应具有足够的粘结强度。传感器用耦合剂粘结时,粘结层应尽可能薄;必要时可采用冲击钻打

10、孔安装方式,但传感器底安装面应与桩顶面紧密接触。2 实心桩的激振点位置应选择在桩中心,测量传感器安装位置宜为距桩中心2/3半径处;空心桩的激振点与测量传感器安装位置宜在同一水平面上,且与桩中心连线形成的夹角宜为90,激振点和测量传感器安装位置宜为桩壁厚的1/2处。相对桩顶横截面尺寸而言,激振点处为集中力作用,在桩顶部位可能出现与桩的横向振型相应的高频干扰。当锤击脉冲变窄或桩径增加时,这种由三维尺寸效应引起的干扰加剧。传感器安装点与激振点距离和位置不同,所受干扰的程度各异。初步研究表明:实心桩安装点在距桩中心约2/3半径R时,所受干扰相对较小;空心桩安装点与激振点平面夹角等于或略大于90 时也有

11、类似效果,该处相当于横向耦合低阶振型的驻点。另应注意加大安装与激振两点距离或平面夹角将增大锤击点与安装点响应信号时间差,造成波速或缺陷定位误差。传感器安装点、锤击点布置见图1。3 激振点与测量传感器安装位置应避开钢筋笼的主筋影响。激振点与传感器安装点应远离钢筋笼的主筋,其目的是减少外露主筋对测试产生干扰信号。若外露主筋过长而影响正常测试时,应将其割短。4 激振方向应沿桩轴线方向。5 瞬态激振应通过现场敲击试验,选择合适重量的激振力锤和锤垫,宜用宽脉冲获取桩底或桩身下部缺陷反射信号,宜用窄脉冲获取桩身上部缺陷反射信号。瞬态激振通过改变锤的重量及锤头材料,可改变冲击入射波的脉冲宽度及频率成分。锤头

12、质量较大或刚度较小时,冲击入射波脉冲较宽,低频成分为主;当冲击力大小相同时,其能量较大,应力波衰减较慢,适合于获得长桩桩底信号或下部缺陷的识别。锤头较轻或刚度较大时,冲击入射波脉冲较窄,含高频成分较多;冲击力大小相同时,虽其能量较小并加剧大直径桩的尺寸效应影响,但较适宜于桩身浅部缺陷的识别及定位。6 稳态激振应在每一个设定频率下获得稳定响应信号,并应根据桩径、桩长及桩周土约束情况调整激振力大小。8.3.4 信号采集和筛选应符合下列规定:1 根据桩径大小,桩心对称布置24个检测点;每个检测点记录的有效信号数不宜少于3个。2 检查判断实测信号是否反映桩身完整性特征。3 不同检测点及多次实测时域信号

13、一致性较差,应分析原因,增加检测点数量。4 信号不应失真和产生零漂,信号幅值不应超过测量系统的量程。桩径增大时,桩截面各部位的运动不均匀性也会增加,桩浅部的阻抗变化往往表现出明显的方向性。故应增加检测点数量,使检测结果能全面反映桩身结构完整性情况。每个检测点有效信号数不宜少于3个,通过叠加平均提高信噪比。8.4 检测数据的分析与判定8.4.1 桩身波速平均值的确定应符合下列规定:1 当桩长已知、桩底反射信号明确时,在地质条件、设计桩型、成桩工艺相同的基桩中,选取不少于5根类桩的桩身波速值计算其平均值。为分析不同时段或频段信号所反映的桩身阻抗信息、核验桩底信号并确定桩身缺陷位置,需要确定桩身波速

14、及其平均值c。 波速除与桩身混凝土强度有关外,还与混凝土的骨料品种、粒径级配、密度、水灰比、成桩工艺(导管灌注、振捣、离心)等因素有关。波速与桩身混凝土强度整体趋势上呈正相关关系,即强度高波速高,但二者并不为一一对应关系。在影响混凝土波速的诸多因素中,强度对波速的影响并非首位。2 当无法按上款确定时,波速平均值可根据本地区相同桩型及成桩工艺的其他桩基工程的实测值,结合桩身混凝土的骨料品种和强度等级综合确定。虽然波速与混凝土强度二者并不呈一一对应关系,但考虑到二者整体趋势上呈正相关关系,且强度等级是现场最易得到的参考数据,故对于超长桩或无法明确找出桩底反射信号的桩,可根据本地区经验并结合混凝土强

15、度等级,综合确定波速平均值,或利用成桩工艺、桩型相同且桩长相对较短并能够找出桩底反射信号的桩确定的波速,作为波速平均值。此外,当某根桩露出地面且有一定的高度时,可沿桩长方向间隔一可测量的距离段安置两个测振传感器,通过测量两个传感器的响应时差,计算该桩段的波速值,以该值代表整根桩的波速值。8.4.2 桩身缺陷位置应按下列公式计算:x=1/2000 t x c(8.4.2-1)x=1/2c/f(8.4.2-2)式中x桩身缺陷至传感器安装点的距离(m);tx速度波第一峰与缺陷反射波峰间的时间差(m); c受检桩的桩身波速(m/s),无法确定时用c m值替代;f幅频信号曲线上缺陷相邻谐振峰间的频差(Hz)。 8.4.3 桩身完整性类别应结合缺陷出现的深度、测试信号衰减特性以及设计桩型、成桩工艺、地质条件、施工情况,按本规范表3.5.1的规定和表8.4.3所列实测时域或幅频信号特征进行综合分析判定。表3.5.1桩身完整性分类表桩身完整性类别分类原则类桩桩身完整类桩桩身有轻微缺陷,不会影响桩身结构承载力的正常发挥类桩桩身有明显缺陷,对桩身结构承载力有影响类桩桩身存在严重缺陷表8.4.3 桩身完整性判断类别时域信号特征幅频信号特征2L/c时刻前无缺陷反射波,由桩底反射波柱底谐振峰排列基本等间距,其相邻频差fc/2L2L/c时刻前出现轻微缺陷反射波,有桩底反

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号