动态路由协议培训.doc

上传人:F****n 文档编号:95542416 上传时间:2019-08-20 格式:DOC 页数:58 大小:412KB
返回 下载 相关 举报
动态路由协议培训.doc_第1页
第1页 / 共58页
动态路由协议培训.doc_第2页
第2页 / 共58页
动态路由协议培训.doc_第3页
第3页 / 共58页
动态路由协议培训.doc_第4页
第4页 / 共58页
动态路由协议培训.doc_第5页
第5页 / 共58页
点击查看更多>>
资源描述

《动态路由协议培训.doc》由会员分享,可在线阅读,更多相关《动态路由协议培训.doc(58页珍藏版)》请在金锄头文库上搜索。

1、 培训教材-路由器 客户服务中心1 目录目录 1.路由协议路由协议3 1.1.静态的与动态的内部路由3 1.2.选路信息协议(RIP).5 1.2.1.慢收敛问题的解决.7 1.2.2.RIP报文格式8 1.2.3.RIP编址约定9 1.2.4.RIP报文的发送10 1.3.OSPF10 1.3.1.概述.10 1.3.2.数据包格式.10 1.3.3.OSPF基本算法11 1.3.4.OSPF路由协议的基本特征12 1.3.5.区域及域间路由.13 1.3.6.OSPF协议路由器及链路状态数据包分类16 1.3.7.OSPF协议工作过程18 1.3.8.OSPF路由协议验证21 1.3.9.

2、小结.21 1.4.HELLO 协议 .22 1.5.将 RIP,HELLO 和 EGP 组合起来.23 1.6.边界网关协议第 4 版(BGP4)24 1.7.EGP27 1.7.1.给体系结构模型增加复杂性.27 1.7.2.一个其本思想:额外跳.28 1.7.3.自治系统的概念.30 1.7.4.外部网关协议(EGP).31 1.7.5.EGP报文首部32 1.7.6.EGP邻站获取报文33 1.7.7.EGP邻站可达性报文34 1.7.8.EGP轮询请求报文34 1.7.9.EGP选路更新报文35 1.7.10.从接收者的角度来度量.37 1.7.11.EGP的主要限制38 2.CIS

3、CO 路由器产品介绍路由器产品介绍 .40 2.1.CISCO 2500 40 2.2.CISCO 4500-M .40 2.3.CISCO 7200 41 2.4.CISCO 7513/7507.43 3.路由器的基本配置路由器的基本配置43 参数设置 43 培训教材-路由器 客户服务中心2 网络号43 IP 类设置.44 菜单设置44 欢迎文本44 异步线的设置44 总结45 附录一 路由器常用命令45 4.基本维护基本维护52 两种状态52 帮助52 命令简写52 跟踪错误53 进入设置状态53 存储退出53 删除设置53 一些常用命令53 修改地址53 修改 enable secrec

4、t password.55 附录二 常见网络故障分析及排除.55 1 路由器常用测试命令55 2 路由器传输故障排除方法55 3网络常见问题.57 培训教材-路由器 客户服务中心3 1. 路由协议路由协议 1.1. 静态的与动态的内部路由 在一个自治系统内的两个路由器彼此互为内部路由器。例如,因为核心构成了一个自 治系统,两个 Internet 核心路由器互为内部路由器。在大学校园里的两个路由器也互为内 部路由器,因为在校园里的所有机器都属于同一个自治系统。 自治系统中的路由器如何获得关于本系统内部的网络的信息呢?在小型的、缓慢变化 着的互连网络中,管理者可以使用手工方式进行路由的建立与修改。

5、管理者保留一张关于网 络的表格,并在有新的网络加入到该自治系统或从该自治系统删除一个网络时,更新该表格。 例如图 1.1 中显示的小公司的互连网络。为这样的互连网络选路耗费就微不足道,因为任何 两点之间仅有一条路由。管理者可用人工的方式来配置所有的主机和路由器的路由。互连网 络更改状态(如新增一个网络)时,管理者重新配置所有机器上的路由。 图 1.1 在一个网点中包括了 5 个以太网和 4 个路由器的 小型互连网络。在这个互连网络中任意两台主机之 间仅有一个路由 人工的系统明显存在缺点,它不能适应网络的迅速增长或迅速变化。在大型的、迅速 变化的环境中,如 Internet 网,人对情况变化的反

6、应速度太慢,来不及处理问题;必须使 用自动机制。采用自动机制还有利于提高可靠性,并对某些路由可变的小型互连网络中的故 障采取反应措施。为了验证这一点,我们假设在图 1.1 中增加一个路由器,使之变为图 1.2 所示的结构。 网络 5 网络 4 网络 1 网络 2 网络 3 R2 R1 R3R4 培训教材-路由器 客户服务中心4 图 1.2 增加了路由器 R5 后使得网络 2 和 3 之间多了一条备 用路径当原有路由出故障时,选路软件能够迅速切换到 备用路由 对于拥有多个物理路径的互连网络体系结构,管理者通常选择其中一条作为基本路径。 如果该基本路径上的路由器出故障,就必须改动路由使得通信流量通

7、过备用路由器来传输。 人工改变路由的方式耗时长而且容易带来错误。因此,即便是小型互连网中,也应使用处动 机制来迅速而可靠地改变路由。 为了自动地保存准确的网络可达信息,内部路由器之间要进行通信,即路由器与可到 达的另一个路由器要交换网络可到达性数据或网络选路信息。把整个自治系统的可到达信息 汇集起来之后,系统中某个路由器就使用 EGP 把它们通告给另一个自治系统。 内部路由器通信与外部路由器通信的不同之处就是:EGP 提供了为外部路由器通信广 泛使用的标准,而内部路由器通信却没有一个单独的标准。造成这种情况的原因之一,就是 自治系统的拓扑结构和具体技术的多样性。另一个原因是结构简单与功能强大之

8、间的折衷, 即易于安装和配置的协议往往不能提供强大的功能。因此,流行的适用于内部路由器通信的 协议有很多种,但多数自治系统只选择其中一个在内部的来传播选路信息。 由于没有单独的标准,我们使用内部网关协议 IGP(Interior Gateway Protocol)作为 统称来描述所有的用于内部路由器之间交换的网络可达信息及选路信息的算法。例如 Butterfly 核心路由器构成了一个特定的自治系统,它使用 SPREAD 作为其内部网关协议 IGP。有些自治系统使用 EGP 来作 IGP,不过这对那些由具有广播功能的局域网组成的小型自 治系统没有多少意义。 图 1.3 是自治系统使用某种 IGP

9、 在内部路由器之间传播可到达信息的示意图。 在这个图中,IGP1 和 IGP2 分别表示自治系统 1 和 2 所使用的内部网关协议。从图中 可以得到这个重要的概念: 网络 5 网络 4 网络 1 网络 2 网络 3 R2R5 R1 R3R4 培训教材-路由器 客户服务中心5 图 1.3 两个自治系统各自在其内部使用不同的 IGP,但 是其外部路由器使用 EGP 与另一个系统通信的示 意图 一个单个的路由器可以同时使用两种选路协议,一个用于到自 治系统之外的通信,另一个用于自治系统内部的通信。 具体地说,运行 EGP 通告可达性的路由器,通常还需要运行一种 IGP,以便获得其自 治系统内部的信息

10、。 1.2. 选路信息协议(RIP) 使用最广泛的一种 IGP 是选路信息协议 RIP(Routing Information Protocol) ,RIP 的另一个名字是 routed(路由守护神) ,来自一个实现它的程序。这个程序最初由加利福尼 亚大学伯克利分校设计,用于给他们在局域网上的机器提供一致的选路和可达信息。它依靠 物理网络的广播功能来迅速交换选路信息。它并不是被设计来用于大型广域网的(尽管现在 的确这么用) 。 在旋乐(Xerox)公司的 Palo Alto 研究中心 PARC 早期所作的关于网络互连的研究的 基础上,routed 实现了起源于 Xerox NS RIP 的一个

11、新协议,它更为通用化,能够适应多种 网络。 尽管在其前辈上做了一些小改动,RIP 作为 IGP 流行起来并非技术上有过人之处,而 是由于伯克利分校把路由守护神软件附加在流行的 4BSD UNIX 系统上一起分发,从而使得许 多 TCP/IP 网点根本没考虑其技术上的优劣就采用 routed 并开始使用 RIP。一旦安装并使用 了这个软件,它就成为本地选路的基础,研究人员也开始在大型网络上使用它。 关于 RIP 的最令人吃惊的事可能就是它在还没有正式标准之前就已经广泛流行了。大 多数的实现都脱胎于伯克利分校的程序,但是由于编程人员对未形成文档的微妙细节理解不 同而造成了它们之间互操作性限制。协议

12、出现新版本后,出现了更多的问题。在 1988 年 6 月形成了一个 RFC 标准,这才使软件商解决了互操作性问题。 RIP 协议的基础就是基于本地网的矢量距离选路算法的直接而简单的实现。它把参加 通信的机器分为主机的(active)和被动的(passive 或 silent) 。主动路由器向其他路由 器通告其路由,而被动路由器接收通告并在此基础上更新其路由,它们自己并不通告路由。 EGP IGP1 R1 IGP1 IGP2 R2 IGP2 培训教材-路由器 客户服务中心6 只有路由器能以主动方式使用 RIP,而主机只能使用被动方式。 以主动方式运行 RIP 的路由器每隔 30 秒广播一次报文,

13、该报文包含了路由器当前的选 路数据库中的信息。每个报文由序偶构成,每个序偶由一个 IP 网络地址和一个代表到达该 网络的距离的整数构成。RIP 使用跳数度量(hop count metric)来衡量到达目的站的距离。 在 RIP 度量标准中,路由器到它直接相连的网络的跳数被定义为 1,到通过另一个路由器可 达的网络的距离为 2 跳,其余依此类推。因此从给定源站到目的站的一条路径的跳数 (number of hops 或 hop count)对应于数据报沿该路传输时所经过的路由器数。显然,使 用跳数作为衡量最短路径并不一定会得到最佳结果。例如,一条经过三个以太网的跳数为 3 的路径,可能比经过两

14、条低速串行线的跳数为 2 的路径要快得多。为了补偿传输技术上的差 距,许多 RIP 软件在通告低速网络路由时人为地增加了跳数。 运行 RIP 的主动机器和被动机器都要监听所有的广播报文,并根据前面所说的矢量距 离算法来更新其选路表。例如图 1.2 中的互连网络中,路由器 R1 在网络 2 上广播的选路信 息报文中包含了序偶(1,1) ,即它能够以费用值 1 到达网络 1。路由器 R2 和 R5 收到这个广 播报文之后,建立一个通过 R1 到达网络 1 的路由(费用为 2) 。然后,路由器 R2 和 R5 在网 络 3 上广播它们的 RIP 报文时就会包含序偶(1,2) 。最终,所有的路由器和主

15、机都会建立到 网络 1 的路由。 RIP 规定了少量的规则来改进其性能和可靠性。例如,当路由器收到另一个路由器传 来的路由时,它将保留该路由直到收到更好的路由。在我们所举的例子中,如果路由器 R2 和 R5 都以费用 2 来广播到网络 1 的路由,那么 R3 的 R4 就会将路由设置为经过先广播的那 个路由器到达网络 1。即: 为了防止路由在两个或多个费用相等的路径之间振荡不定,RIP 规定在 得到费用更小的路由之前保留原有路由不变。 如果第一个广播路由的路由器出故障(如崩溃)会有什么后果?RIP 规定所有收听者 必须对通过 RIP 获得的路由设置定时器。当路由器在选路表中安置新路由时,它也为

16、之设定 了定时器。当该路由器又收到关于该路由的另一个广播报文后,定时器也要重新设置。如果 经过 180 秒后还没有下一次通告该路由,它就变为无效路由。 RIP 必须处理下层算法的三类错误。第一,由于算法不能明确地检测出选路的回路, RIP 要么假定参与者是可信赖的,要么采取一定的预防措施。第二,RIP 必须对可能的距离 使用一个较小的最大值来防止出现不稳定的现象(RIP 使用的值是 16) 。因而对于那些实际 跳数值在 16 左右的互连网络,管理者要么把它划分为若干部分,要么采用其他的协议。第 三,选路更新报文在网络之间的传输速度很慢,RIP 所使用的矢量距离算法会产生慢收敛 (slow con

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 事务文书

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号