动力电池基础知识

上传人:豆浆 文档编号:9462431 上传时间:2017-10-03 格式:DOCX 页数:6 大小:26.96KB
返回 下载 相关 举报
动力电池基础知识_第1页
第1页 / 共6页
动力电池基础知识_第2页
第2页 / 共6页
动力电池基础知识_第3页
第3页 / 共6页
动力电池基础知识_第4页
第4页 / 共6页
动力电池基础知识_第5页
第5页 / 共6页
点击查看更多>>
资源描述

《动力电池基础知识》由会员分享,可在线阅读,更多相关《动力电池基础知识(6页珍藏版)》请在金锄头文库上搜索。

1、动力电池的主要性能参数1、电压:开路电压= 电动势+电极过电位,工作电压=开路电压+电流在电池内部阻抗上产生的电压降。电动势由电极和电解质材料特性决定,电极的过电位与材料活性、荷电状态和工况有关。2、内阻 :电池在短时间内的稳态模型可以看作为一个电压源,其内部阻抗等效为电压源内阻,内阻大小决定了电池的使用效率。电池内阻包括欧姆电阻和极化电阻两部分,欧姆电阻不随激励信号频率变化,又称交流电阻,在同一充放电周期内,欧姆电阻除温升影响外变化很小。极化电阻由电池电化学特性对外部充放电表现出的抵抗反应产生,与电池荷电、充放强度、材料活性都有关。同批电池,内阻过大或过小者都不正常,内阻过小可能意味材料枝晶

2、生长和微短路,内阻太大又可能是极板老化、活性物质丧失、容量衰减,内阻变化可以作为电池裂化的充分性参考依据之一。3、温升:电池温升定义为电池内部温度与环境温度的差值。多数锂电池充电时属吸热反应,放电时为放热反应,两者都包含内阻热耗。充电初期,极化电阻最小,吸热反应处于主导地位,电池温升可能出现负值,充电后期,阻抗增大,释热多于吸热,温升增加,过充时,随不可逆反应的出现,逸出气体,内压升高、温度升高,直到变形、爆裂。4、内压:电池内部压力,由于电池内部反应逸出气体导致气压增大,气压过大将撑破壳体和发生爆裂,基于安全考虑,一方面锂电池都设计了单向的防爆阀门,一方面用塑壳制造。析气反应常伴随着不可逆反

3、应,也就意味着活性物质的损失、电池容量的下降,无析气、小温升充放电是最理想的工况。5、电量:电学里,电量用 Wh(瓦时)表示,是能量单位,一度电等于 1kWh;电池常用Ah(安时)计算电量,对于动力电池侧重于功率和能量大小,用 Wh 更直接一些,因为电池的电压是变化的,其全程变化量可达到极大值的一半左右,用 Ah 计算电量不能正确描述电池的动力驱动能力,但 Ah 作为电池的电量单位自有其历史和道理,在不引起歧义的地方两种电量单位都可以使用。6、荷电(SOC):电池还有多少电量,又称剩余电量,常取其与额定容量或实际容量的比值,称荷电程度。是人们在使用中最关心的、也是最不易获得的参数数据,人们试图

4、通过测量内阻、电压电流的变化等推算荷电量,做了许多研究工作,但直到目前,任何公式和算法都不能得到统计数据的有效支持,指示的荷电程度总是非线性变化。7、容量:电池在充足电以后,开始放电直到放空电为止,能输出的最大电量。容量与放电电流大小有关,与充放电截止电压也有关系,故容量定义为小时率容量,动力电池常用 1 小时率(1C)或 2 小时率(0.5C)容量。电池在化成之前材料的活性不能正常发挥,容量很小,化成过程开始后,电池进入其生命期,在整个生命期里,电池的活化和劣化过程是一个问题的两个方面,初期活化作用处于主导地位,电池容量逐渐上升;以后,活化和劣化作用都不明显或相当;后期,劣化作用显著,容量衰

5、减,规定容量衰减到一定比例(60%)后,电池寿命终结。(一般所指电池寿命是指剩余容量为 80%的循环次数)8、功率:电学定义直流电源的输出功率等于输出电压与电流的乘积,锂电池单体电压高,在相同的输出电流下,其功率分别是铅酸(2.0V)、镍镉 (1.2V)或镍氢(1.2V)的 1.6 倍和 3倍。电动汽车用动力电池组的负载是电机控制器,电机控制器根据车速变化调整输出功率,短时间来看,电池组驱动的是恒功率负载,这个功率变化的范围极大,制动时有与加速时相近的反向逆变功率。9、效率:电池的效率指电池的充放电效率或能量输出效率,本文指后者。对于电动汽车,续驶里程是最重要指标之一,在电池组电量和输出阻抗一

6、定的前提下,根据能量守恒定律,电池组输出的能量转化为两部分,一部分作为热耗散失在电阻上,另一部分提供给电机控制器转化为有效动力,两部分能量的比率取决于电池组输出阻抗和电机控制器的等效输入阻抗之比,电池组的阻抗越小,无用的热耗就越小,输出效率就更大。10 、寿命:单体电池寿命定义和测试程序已被人们普遍接受并形成许多标准,测试寿命时,可保证不过充、过放,也就不会提前失效;与单体不同,电池组的寿命测试目前的做法不科学,在一定程度上限制了动力锂电池的实用化进程。提供者强调每只电池的电压不可超越规定的限值,电池组的寿命应该是各单体电池寿命的最小者,其值应该与单体平均寿命相差不会太多,测试人员模拟电池组使

7、用情况,用对单体电池相同的方法测试寿命,电压限值取单体电压限值与数量乘积,实际限制的是单体平均电压,组内单体电压有低有高,对于几十只、上百只的电池组,电压、容量、内阻的差异性总是客观存在的,过充过放无法避免,并且一旦发生,相关电池将很快报废,因此就出现专家组测试的电动汽车动力电池组的寿命还没有突破过百次。11 、安全:动力电池的工作条件苛刻,主要的安全问题是电池自身爆炸、燃烧和导致的电火,在电动汽车研发进程中,发生过多次起火事件,对电动汽车的发展造成了负面影响,通过多种渠道了解,在这些事故中,有电池自燃的,有车辆被烧毁的,甚至动用消防队灭火,许多单位顾忌影响而施行保密策略,事发第一现场很难到场

8、,总结这些不完全的事故信息,初步有以下推断:长期在库存的电池未发生过自燃和爆炸,运输过程中也没出现自燃的;电池爆炸发生于充电后期或已经结束,充电设备和方法难脱干系;外部电路短路可以造成强电弧或使导线燃烧,也可以导致自燃,一般的电压、电流源都有此特性;用组电压或电流限制不能避免电池的过充过放;过充电可能使电池变形、失效、燃烧、甚至爆炸,过放电(反充电) 一次足以使电池报废;一些受试电池通过了苛刻的用冲锋枪射击、挤压破裂短路、水淋、水泡等安规测试。总之,电池的正确使用技术是非常重要的。动力电池组的均衡控制和管理要实现单体电压的均衡控制,均衡器是电池管理系统的核心部件,离开均衡器,管理系统即使得到了

9、电池组测量数据,也无所作为, 也就无所谓管理.随着电动汽车技术的不断发展,电池组均衡装置的需求已经迫在眉睫,已有许多研究, 国外已有报道,如德国 KaiserseLautern 大学,日本本田公司等, 国内技术尚未成熟 .1、断流与分流均衡器按能量回路处理的方式分断流和分流,断流指在监控单体电压变化的基础上,在满足一定条件时把单体电池的充电或负载回路断开,通过机械触点或电力电子部件组成开关矩阵,动态改变电池组内单体之间的连接结构, 可能的断流部件有机械、继电器、半导体.电动汽车用电池组功率很大,瞬时电流可达数百安培而且双极性变化,在考虑可行性、性价比、实用性、可靠性等诸多因素,断流的实施难度极

10、大, 不适合在电动汽车上使用.分流并不断开电池的工作回路,而是给每只电池各增加一个旁路装置,就象电池伴侣,两者合起来的特性趋于电池组内平均素质的单体电池特性.2、能耗与回馈能耗型指给各单体电池提供并联电流支路,将电压过高的单体电池通过分流转移电能达到均衡目的,实现电流支路的装置可以是可控电阻, 或经能量变换器带动空调、风机等耗电设备,其实质是通过能量消耗的办法限制单体电池出现过高或过低的端电压,只适合在静态均衡中使用,其高温升等特点降低了系统可靠性, 消耗能源,在动态均衡中不可能使用.与能耗不同,回馈通过能量变换器将单体之间的偏差能量馈送回电池组或组中某些单体.理论上,当忽略转换效率时 ,回馈

11、不消耗能量 ,可实现动态均衡.回馈型具有更高的研究价值和使用价值,最有可能达到实用化设计.3、能量变换器电池电压均衡利用能量变换装置实现,依据高频开关电源(SMPS)的原理和技术设计,基本的电源电路包括非隔离式的 Buck、Boost 、BuckBoost、Cuk、Sepic、Zeta,隔离式的有Forward、Flyback、PushPull 、HalfBridge、FullBridge、Iso-Cuk 等.充电时小容量电池充入较少能量,分流电路吸收电能 ,放电时分流电路补充能量 ,能量变换器应该实现双向变换.原则上各种电源电路经改进设计都可以实现双向,最简单的方案是用两个电源,输入与输出交

12、叉并联,两个电路分别控制.由于受成本、体积与重量、长期工作的可靠性等因素的影响,双向单变换器比单向双变换器更有优势,是发展方向.4、静态与动态按均衡功能特点分充电、放电和动态均衡.充电均衡在充电过程中后期,单体电压达到或超过截止电压时,均衡电路开始工作, 减小单体电流,以期限制单体电压不高于充电截止电压.与充电均衡类似,放电均衡在电池组输出功率时, 通过补充电能限制单体电压不低于预设的放电终止电压.充电截止电压和放电终止电压的设置与温度有关联.与充电和放电均衡不同,动态均衡不论在充电态、放电态,还是浮置状态, 都可以通过能量转换的方法实现组中单体电压的平衡,实时保持相近的荷电程度.充电均衡的唯

13、一功能是防止过充电,而在放电使用中带来的负面影响使得使用这种均衡得不偿失:不加充电均衡时,容量小的电池被一定程度过充,组内任何单体过放以前, 电池组输出 Ah 计电量略高于单体最小容量.使用充电均衡时, 小容量电池没有过充,能放出的电量小于不用均衡器时轻度过充所能释放的电能,使得该单体电池放电时间更短,过放的可能性就更大了.另外,当电机控制器以组电压降低到一定程度为依据减小或停止输出功率时,由于大容量电池因充电均衡被充入更多电能而表现出较高的平台电压,淹没和淡化了小容量电池的电压跌落, 将出现组电压足够高, 而小容量单体已经过放 .放电均衡与充电均衡情形相似,大容量浅充足放, 小容量过充足放,

14、加速单体性能差异性变化的结果是相同的,都不能形成真正实用的产品, 只有动态均衡集中了两种均衡的优点,尽管单体之间初始容量有差异,工作中却能保证相对的充放电强度和深度的一致性,渐进达到共同的寿命终点.5、单向和双向根据均衡器处理能量的可能流向分单向和双向均衡,双向型使用双向变换器,输入输出方向动态调整.比较而言,双向型更具优势, 基于均衡效率考虑,对于单向型均衡器, 使用自组高压到单体低压的变换器适用于放电均衡,使用自单体低压到组高压的逆变器适合充电均衡。动力电池组充放电特性单体电池作为动力源如手机电池,电源管理技术已经十分完善,但在电池组中,单体之间的差异总是存在的,以容量为例,其差异性永不会

15、趋于消失,而是逐步恶化的。组中流过同样电流,相对而言,容量大者总是处于小电流浅充浅放、趋于容量衰减缓慢、寿命延长,而容量小者总是处于大电流过充过放、趋于容量衰减加快、寿命缩短,两者之间性能参数差异越来越大,形成正反馈特性,小容量提前失效,组寿命缩短。1、充电:目前锂电池充电主要是限压限流法,初期恒流(CC)充电,电池接受能力最强,主要为吸热反应,但温度过低时,材料活性降低,可能提前进入恒流阶段,因此在北方冬天低温时,充电前把电池预热可以改善充电效果。随着充电过程不断进行,极化作用加强,温升加剧,伴随析气,电极过电位增高,电压上升,当荷电达到约 7080%时,电压达到最高充电限制电压,转入恒压(

16、CV)阶段。理论上并不存在客观的过充电压阈值,若理解为析气、升温就意味着过充,则在恒流阶段末期总是发生不同程度的过充,温升达到 4050 摄氏度,壳体形变容易感测,部分逸出气体还可以复合,另一些就作为不可逆反应的结果,损失了容量,这可以看作电流强度超出电池接受能力。最后恒压阶段,又称涓流充电,大约花费 30%的时间充入 10%的电量,电流强度减小,析气、温升不再增加,并反方向变化。2、过充电:上述过程考虑电池组总电压或平均电压控制,其实总有单体电压较高者,相对组内其它电池已经进入过充电阶段。过充电时,若在恒流阶段发生,由于电流强度大,电压、温升、内压持续升高,以 4V 锂为例,电压达到 4.5V 时,温升 40 度、塑料壳体变硬;4.6V 时温升可达 60 度、壳体形变明显并不可恢复,若继续过充,气阀打开、温升继续升高、不可逆反应加剧。恒压阶段,电流强度较小,过充症状不如恒流阶段显著。只要温升、内压过高,就伴随副反应,电池容量就会减少,而副反应具有惯性,发展到一定程度,可能在充电中也可能在充电结束后的短时间里使电池内部物质燃烧,导致电

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 其它办公文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号