2019潍坊市中考数学专题突破专题四:几何变换综合题 有答案

上传人:【**** 文档编号:94255634 上传时间:2019-08-04 格式:DOC 页数:33 大小:2.88MB
返回 下载 相关 举报
2019潍坊市中考数学专题突破专题四:几何变换综合题 有答案_第1页
第1页 / 共33页
2019潍坊市中考数学专题突破专题四:几何变换综合题 有答案_第2页
第2页 / 共33页
2019潍坊市中考数学专题突破专题四:几何变换综合题 有答案_第3页
第3页 / 共33页
2019潍坊市中考数学专题突破专题四:几何变换综合题 有答案_第4页
第4页 / 共33页
2019潍坊市中考数学专题突破专题四:几何变换综合题 有答案_第5页
第5页 / 共33页
点击查看更多>>
资源描述

《2019潍坊市中考数学专题突破专题四:几何变换综合题 有答案》由会员分享,可在线阅读,更多相关《2019潍坊市中考数学专题突破专题四:几何变换综合题 有答案(33页珍藏版)》请在金锄头文库上搜索。

1、专题类型突破专题四几何变换综合题类型一 涉及一个动点的几何问题 (2018长春中考)如图,在RtABC中,C90,A30,AB4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动过点P作PDAC于点D(点P不与点A,B重合),作DPQ60,边PQ交射线DC于点Q.设点P的运动时间为t秒(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设PDQ与ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过ABC一边中点时,直接写出t的值【分析】 (1)先求出AC,用三角函数求出AD,即可得出结论;(2)利用ADDQAC,即可得

2、出结论;(3)分两种情况,利用三角形的面积公式和面积差即可得出结论;(4)分三种情况,利用锐角三角函数,即可得出结论【自主解答】1(2018江西中考)在菱形ABCD中,ABC60,点P是射线BD上一动点,以AP为边向右侧作等边APE,点E的位置随着点P的位置变化而变化(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是 ,CE与AD的位置关系是 ;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB2,BE2,求四

3、边形ADPE的面积类型二 涉及两个动点的几何问题 (2018青岛中考)已知:如图,四边形ABCD,ABDC,CBAB,AB16 cm,BC6 cm,CD8 cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2 cm/s.点P和点Q同时出发,以QA,QP为边作平行四边形AQPE,设运动的时间为t(s),0t5.根据题意解答下列问题:(1)用含t的代数式表示AP;(2)设四边形CPQB的面积为S(cm2),求S与t的函数关系式;(3)当QPBD时,求t的值;(4)在运动过程中,是否存在某一时刻t,使点E在ABD的平分线上?若存在,求出t的值;若不存在,请说

4、明理由【分析】 (1)作DHAB于点H,则四边形DHBC是矩形,利用勾股定理求出AD的长即可解决问题;(2)作PNAB于N,连接PB,根据SSPQBSBCP计算即可;(3)当QPBD时,PQNDBA90,QPNPQN90,推出QPNDBA,由此利用三角函数即可解决问题;(4)连接BE交DH于点K,作KMBD于点M.当BE平分ABD时,KBHKBM,推出KHKM.作EFAB于点F,则AEFQPN,推出EFPN,AFQN,由KHEF可得,由此构建方程即可解决问题【自主解答】2(2018黄冈中考)如图,在平面直角坐标系xOy中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,C120,边长O

5、A8.点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边ABBCCO以每秒2个单位长的速度作匀速运动,过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动(1)当t2时,求线段PQ的长;(2)求t为何值时,点P与N重合;(3)设APN的面积为S,求S与t的函数关系式及t的取值范围类型三 图形的平移变换 (2017扬州中考)如图,将ABC沿着射线BC方向平移至ABC,使点A落在ACB的外角平分线CD上,连接AA.(1)判断四边形ACCA的形状,并说明理由;(2)在ABC中,B

6、90,AB24,cosBAC,求CB的长【分析】 (1)根据平行四边形的判定定理(有一组对边平行且相等的四边形是平行四边形)知四边形ACCA是平行四边形再根据对角线平分对角的平行四边形是菱形知四边形ACCA是菱形(2)通过解直角ABC得到AC,BC的长度,由(1)中菱形ACCA的性质推知ACAA,由平移的性质得四边形ABBA是平行四边形,则AABB,所以CBBBBC.【自主解答】平移变换命题的呈现形式主要有:(1)坐标系中的点、函数图象的平移问题;(2)涉及基本图形平移的几何问题;(3)利用平移变换作为工具解题其解题思路:(1)特殊点法:解题的关键是学会运用转化的思想,如坐标系中图象的平移问题

7、,一般是通过图象上一个关键(特殊)点的平移来研究整个图象的平移;(2)集中条件法:通过平移变换添加辅助线,集中条件,使问题获得解决;(3)综合法:已知条件中涉及基本图形的平移或要求利用平移作图的问题时,要注意找准对应点,看清对应边,注意变换性质的理解和运用3(2018安徽中考)如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN1.正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处将正方形ABCD沿l向右平移,直到点A与点N重合为止记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为( )4如图,在平面直角坐标系中,AOB的顶

8、点O为坐标原点,点A的坐标为(4,0),点B的坐标为(0,1),点C为边AB的中点,正方形OBDE的顶点E在x轴的正半轴上,连接CO,CD,CE.(1)线段OC的长为 ;(2)求证:CBDCOE;(3)将正方形OBDE沿x轴正方向平移得到正方形O1B1D1E1,其中点O,B,D,E的对应点分别为点O1,B1,D1,E1,连接CD1,CE1,设点E1的坐标为(a,0),其中a2,CD1E1的面积为S.当1a2时,请直接写出S与a之间的函数解析式;在平移过程中,当S时,请直接写出a的值类型四 图形的旋转变换 (2017潍坊中考)边长为6的等边ABC中,点D,E分别在AC,BC边上,DEAB,EC2

9、.(1)如图1,将DEC沿射线EC方向平移,得到DEC,边DE与AC的交点为M,边CD与ACC的角平分线交于点N.当CC多大时,四边形MCND为菱形?并说明理由(2)如图2,将DEC绕点C旋转(0360),得到DEC,连接AD,BE.边DE的中点为P.在旋转过程中,AD和BE有怎样的数量关系?并说明理由;连接AP,当AP最大时,求AD的值(结果保留根号)【分析】 (1)先判断出四边形MCND为平行四边形,可得MCE和NCC为等边三角形,即可求出CC,得出CNCM,即证四边形MCND为菱形;(2)分两种情况,利用旋转的性质,即可判断出ACDBCE,即可得出结论;先判断出点A,C,P三点共线,求出

10、CP,AP,最后用勾股定理即可得出结论【自主解答】旋转变换问题的解题思路:(1)以旋转为背景的问题,要根据题意,找准对应点,看清对应边,注意对旋转的性质的理解和运用,想象其中基本元素,如点、线(角)之间的变化规律,再结合几何图形的性质,大胆地猜想结果并加以证明来解决问题;(2)利用旋转变换工具解决问题,要注意观察,通过旋转图形中的部分,运用旋转的性质,将复杂问题简单化5(2018菏泽中考)问题情境:在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动如图1,将矩形纸片ABCD沿对角线AC剪开,得到ABC和ACD.并且量得AB2 cm,AC4 cm.操作发现:(1)将图1中的AC

11、D以点A为旋转中心,按逆时针方向旋转,使BAC,得到如图2所示的ACD,过点C作AC的平行线,与DC的延长线交于点E,则四边形ACEC的形状是 (2)创新小组将图1中的ACD以点A为旋转中心,按逆时针方向旋转,使B,A,D三点在同一条直线上,得到如图3所示的ACD,连接CC,取CC的中点F,连接AF并延长至点G,使FGAF,连接CG,CG,得到四边形ACGC,发现它是正方形,请你证明这个结论实践探究:(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将ABC沿着BD方向平移,使点B与点A重合,此时A点平移至A点,AC与BC相交于点H,如图4所示,连接CC,试求tanCCH的值类型五 图形

12、的翻折变换 (2017德州中考)如图1,在矩形纸片ABCD中,AB3 cm,AD5 cm,折叠纸片使B点落在边AD上的E处,折痕为PQ.过点E作EFAB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P,Q也随之移动当点Q与点C重合时(如图2),求菱形BFEP的边长;若限定P,Q分别在边BA,BC上移动,求出点E在边AD上移动的最大距离【分析】 (1)由折叠的性质得出PBPE,BFEF,BPFEPF,由平行线的性质得出BPFEFP,证出EPFEFP,得出EPEF,因此BPBFEFEP,即可得出结论;(2)由矩形的性质得出BCAD5 cm,CDAB

13、3 cm,AD90,由对称的性质得出CEBC5 cm,在RtCDE中,由勾股定理求出DE4 cm,得出AEADDE1 cm;在RtAPE中,由勾股定理得出方程,解方程得出EP cm即可;当点Q与点C重合时,点E离点A最近,由知,此时AE1 cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AEAB3 cm,即可得出答案【自主解答】翻折变换问题的解题思路:以翻折变换为载体,考查几何图形的判定和性质问题一般先作出折叠前、后的图形位置,考虑折叠前、后哪些线段、角对应相等,哪些量发生了变化然后再利用轴对称的性质和相关图形的性质推出相等的线段、角、全等三角形等,当有直角三角形出现时,

14、考虑利用勾股定理以及方程思想来解决6(2017兰州中考)如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:BDF是等腰三角形;(2)如图2,过点D作DGBE,交BC于点G,连接FG交BD于点O.判断四边形BFDG的形状,并说明理由;若AB6,AD8,求FG的长类型六 图形的相似变换 【探究证明】(1)某班数学课题学习小组对矩形内两条相互垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明:如图1,矩形ABCD中,EFGH,EF分别交AB,CD于点E,F,GH分别交AD,BC于点G,H.求证:;【结论应用】(2)如图2,在满足(1)的条件下,又AMBN,点M,N分别在边BC,CD上若,则的值为 ;【联系拓展】(3)如图3,四边形ABCD中,ABC90,ABAD10,BCCD5,AMDN,点M,N分别在边BC,AB上,求的值【分析】 (1)过点A作APEF,交CD于点P,过点B作B

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 其它中学文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号