555定时器 电子课程设计

上传人:小** 文档编号:92509084 上传时间:2019-07-10 格式:DOC 页数:16 大小:264.08KB
返回 下载 相关 举报
555定时器 电子课程设计_第1页
第1页 / 共16页
555定时器 电子课程设计_第2页
第2页 / 共16页
555定时器 电子课程设计_第3页
第3页 / 共16页
555定时器 电子课程设计_第4页
第4页 / 共16页
555定时器 电子课程设计_第5页
第5页 / 共16页
点击查看更多>>
资源描述

《555定时器 电子课程设计》由会员分享,可在线阅读,更多相关《555定时器 电子课程设计(16页珍藏版)》请在金锄头文库上搜索。

1、常熟理工学院电气与自动化工程学院课程设计用纸目录摘要21. Multisim软件的简介32. 系统设计总体方案32.1 设计基本思路32.2 设计总流程图43. 555定时器,CD4518和CD4011介绍43.1 555定时器43.2 CD451863.3 CD4011引脚图84. 数字逻辑控制,脉冲信号产生,计数器计数和数码管显示模块电路图94.1 数字逻辑控制模块94.1.1 数字逻辑控制模块电路图94.1.2 数字逻辑控制模块原理104.2 脉冲信号产生模块104.2.1 脉冲信号产生模块电路图104.2.2 冲信号产生模块原理114.3 计数器计数模块124.3.1 计数器计数电路图

2、124.3.2 计数器计数模块原理134.4 显示器模块135. 电路的总体设计与调试145.1 总体电路原理图145.2 总电路工作原理146. 课程设计收获与体会157. 参考文献15摘要 本次课程设计利用555定时器以及数字逻辑芯片和数码管实现数字电子计时器功能,计时器显示099计数,在实际生活中应用很广。根据日常生活中观察,数字式计时器设计成型后供扩展的方面很多,例如自动报警、按时自动打铃等。因此,与机械式时钟相比具有更高的可视性和精确性,而且无机械装置,具有更长的使用寿命,所以研究数字钟及扩大其应用,有着非常现实和实际的意义。目前,数字计数器的功能越来越强,并且有多种专门的大规模集成

3、电路可供选择。但从知识储备的角度考虑,本设计是以中小规模集成电路设计数字钟的一种方法。数字计数器包括组合逻辑电路和时序电路。 共 15 页, 第 1 页1. Multisim软件的简介 Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。 软件以图形界面为主,采用菜单、工具栏和热键相结合的方式,具有一般Windows应用软件的界面风格,用户可以根据自己的习惯和熟悉程度自如使用。一、Multisim的主窗口界面。 界面由多个区域构成:菜单栏,各

4、种工具栏,电路输入窗口,状态条,列表框等。通过对各部分的操作可以实现电路图的输入、编辑,并根据需要对电路进行相应的观测和分析。用户可以通过菜单或工具栏改变主窗口的视图内容。二、菜单栏 菜单栏位于界面的上方,通过菜单可以对Multisim的所有功能进行操作。不难看出菜单中有一些与大多数Windows平台上的应用软件一致的功能选项,如File,Edit,View,Options,Help。此外,还有一些EDA软件专用的选项,如Place,Simulation,Transfer以及Tool等。三、工具栏 Multisim 提供了多种工具栏,并以层次化的模式加以管理,用户可以通过View菜单中的选项方

5、便地将顶层的工具栏打开或关闭,再通过顶层工具栏中的按钮来管理和控制下层的工具栏。通过工具栏,用户可以方便直接地使用软件的各项功能。顶层的工具栏有:Standard工具栏、Design工具栏、Zoom工具栏,Simulation工具栏。 Multisim特点:直观的图形界面,丰富的元器件,强大的仿真能力,丰富的测试仪器,完备的分析手段,独特的射频(RF)模块,强大的MCU模块,完善的后处理,详细的报告,兼容性好的信息转换。2. 系统设计总体方案2.1 设计基本思路 任务书要求利用多种数字逻辑芯片、555定时器和数码管设计一个数字式计共 15 页, 第 3 页时器电路,并且 要求555定时器电路产

6、生频率为100Hz的多谐波信号,通过后续电路实现0至99个脉冲的计时功能,电路还应具有计时时间到自动停止和开关重新开始计时功能。 从而完成此课题,可以将这整个计数系统,分为几个模块进行分析。首先是数字逻辑控制模块,通过使用门电路来控制计时器进位及清零。然后是脉冲信号产生模块,由一个振荡电路来产生一个固定频率的脉冲信号,作为计时器的时基信号。再者是计时数计数模块,接收计时及中断信号脉冲,从而控制计数器计数,且有清零功能,该模块选用十进制计数器。最后是译码显示模块,该模块要显示00到99的数字,选用十进制计数器的基础上,通过它们之间的级联,最终显示相应数字,实现计数。2.2 设计总流程图 数字逻辑

7、 控制模块 脉冲信号 产生模块 计数器计数模块 数码管显示模块 图1 设计总流程图3.555定时器,CD4518和CD4011介绍3.1 555定时器 555定时器是一种模拟和数字功能相结合的中规模集成器件。一般用双极型(TTL)工艺制作的称为 555,用 互补金属氧化物(CMOS )工艺制作的称为 7555,除单定时器外,还有对应的双定时器 556/7556。555 定时器的电源电压范围宽,共 15 页, 第 4 页可在 4.5V16V 工作,7555 可在 318V 工作,输出驱动电流约为 200mA,因而其输出可与 TTL、CMOS 或者模拟电路电平兼容。 它内部包括两个电压比较器,三个

8、等值串联电阻,一个 RS 触发器,一个放电管 T 及功率输出级。它提供两个基准电压VCC /3 和 2VCC /3555 定时器的功能主要由两个比较器决定。两个比较器的输出电压控制RS 触发器和放电管的状态。在电源与地之间加上电压,当 5 脚悬空时,则电压比较器 C1 的反相输入端的电压为 2VCC /3,C2 的同相输入端的电压为VCC /3。若触发输入端 TR 的电压小于VCC /3,则比较器 C2 的输出为 0,可使 RS 触发器置 1,使输出端 OUT=1。如果阈值输入端 TH 的电压大于 2VCC/3,同时 TR 端的电压大于VCC /3,则 C1 的输出为 0,C2 的输出为 1,

9、可将 RS 触发器置 0,使输出为 0 电平。它的各个引脚功能如下:1脚:外接电源负端VSS或接地,一般情况下接地。2脚:低触发端。3脚:输出端Vo。4脚:是直接清零端。当此端接低电平,则时基电路不工作,此时不论TR、TH处于何电平,时基电路输出为“0”,该端不用时应接高电平。5脚:VC为控制电压端。若此端外接电压,则可改变内部两个比较器的基准电压,当该端不用时,应将该端串入一只0.01F电容接地,以防引入干扰。6脚:TH高触发端。7脚:放电端,该端与放电管集电极相连,用做定时器时电容的放电。8脚:外接电源VCC,双极型时基电路VCC的范围是4.5 16V,CMOS型时基电路VCC的范围为3

10、18V。一般用5V。 共 15 页, 第 5 页图2 555定时器引脚图图3 555定时器原理图3.2 CD4518CD4518是一个双BCD同步加计数器,由两个相同的同步4级计数器组成。CD4518引脚功能(管脚功能)如下:图4 CD4518芯片 1CP、2CP:时钟输入端。1CR、2CR:清除端。1EN、2EN:计数允许控制端。 Q1AQ4A:计数器输出端。Q1BQ4B:计数器输出端。Vdd:正电源。Vss:地。CD4518是一个同步加计数器,在一个封装中含有两个可互换二/十进制计数器,其功能引脚分别为17和915,该CD4518计数器是单路系列脉冲输入(1脚或2脚,9脚或10脚),4路B

11、CD码信号输出(3脚6脚,11脚14脚)。CD4518控制功能:CD4518有两个时钟输入端CP和EN,若用时钟上升沿触发,信号由CP输入,此时EN端为高电平(1),若用时钟下降沿触发,信号由EN输入,此时CP端为低电平(0),同时复位端Cr也保持低电平(0),只有满足了这些条件时,电路才会处于计数状态,否则没办法工作。将数片CD4518串行级联时,尽管每片CD4518属并行计数,但就整体而言已变成串行计数了。需要指出,CD4518未设置进位端,但可利用Q4做输出端。有人误将第一级的Q4端接到第二级的CP端,结果发现计数变成“逢八进一”了。原因在于Q4是在CP8作用下产生正跳变的,其上升沿不能

12、作进位脉冲,只有其下降沿才是“逢十进一”的进位信号。正确接法应是将低位的Q4端接高位的EN端,高位计数器的CP端接VSS。3.3 CD4011引脚图图5 CD4011芯片功能图图6 CD4011引脚图管脚功能:1A 数据输入端2A 数据输入端3A 数据输入端4A 数据输入端1B 数据输入端2B 数据输入端3B 数据输入端4B 数据输入端1Y 数据输出端2Y 数据输出端3Y 数据输出端4Y 数据输出端VDD 电源正VSS 地 VDD电压范围:0.5v to 18v功耗:双列普通封装 700MW 小型封装 500MW工作温度范围:CD4011BM -55 - +125 CD4011BC -40 -

13、 +85XYQ动作001禁止011设定100重置11不变无表1 CD4011真值表 (1)当X=0、Y=0时,将使两个NAND门之输出均为1,违反触发器之功用,故禁止使用。如真值表第一列。 (2)当X=0、Y=1时,由于X=1导致NAND-A的输出为“1”,使得NAND-B的两个输入均为“1”,因此NAND-B的输出为“0”,如真值表第二列。 (3)当X=1、Y=0时,由于Y=0导致NAND-B的输出为”1”,使得NAND-1的两个输入均为“1”,因此NAND-A的输出为“0”,如真值表第三列。 (4)当X=1、Y=1时,因为一个“1”不影响NAND门的输出,所以两个NAND门的输出均不改变状

14、态,如真值表第四列。4. 数字逻辑控制,脉冲信号产生,计数器计数和数码管显示模块电路图4.1 数字逻辑控制模块4.1.1 数字逻辑控制模块电路图 图7 数字逻辑电路4.1.2 数字逻辑控制模块原理在点击绿色箭头开始,电容开始充电,此时J1按下时,电阻下端1为低电平,电容下端6为低电平,继而U2B端为低电平;如果此刻按下J2,则4端为低电平,发出脉冲到U2B,而1和6输出低电平到与非门U2A,U2A输出高电平到U2B,此时0和1输入到与非门U2B ,继而U2B输出高电平。4.2 脉冲信号产生模块4.2.1 脉冲信号产生模块电路图 图8 脉冲信号产生电路图下图是该频率波形图:图9 振荡器输出波形图4.2.2 冲信号产生模块原理 振荡器是计时器的核心,振荡器的稳定度和频率的精确度决定了计时器的准确度。图10 振荡器电路图 接通电源后,电容C3被充电,vC上升,当vC上升到大于2/3VCC时,触发器被复位,放电管T导通,此时v0为低电平,电容C3通过R2和T放电,使vC下降。当vC下降到小于1/3VCC时,触发器被置位,v0翻转为高电平。电容器C3放电结束,所需的时间为:当C3放电结束时,T截止,VCC将通过R1、R2向电容器C3

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 商业/管理/HR > 管理学资料

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号