DNA-双螺旋结构--发表在NATURE

上传人:206****923 文档编号:91846681 上传时间:2019-07-02 格式:DOC 页数:6 大小:66.02KB
返回 下载 相关 举报
DNA-双螺旋结构--发表在NATURE_第1页
第1页 / 共6页
DNA-双螺旋结构--发表在NATURE_第2页
第2页 / 共6页
DNA-双螺旋结构--发表在NATURE_第3页
第3页 / 共6页
DNA-双螺旋结构--发表在NATURE_第4页
第4页 / 共6页
DNA-双螺旋结构--发表在NATURE_第5页
第5页 / 共6页
点击查看更多>>
资源描述

《DNA-双螺旋结构--发表在NATURE》由会员分享,可在线阅读,更多相关《DNA-双螺旋结构--发表在NATURE(6页珍藏版)》请在金锄头文库上搜索。

1、1953年沃森和克里克发现DNA双螺旋结构发表在Nature上的论文2 April 1953MOLECULAR STRUCTURE OF NUCLEIC ACIDSA Structure for Deoxyribose Nucleic AcidWe wish to suggest a structure for the salt of deoxyribose nucleic acid (D.N.A.). This structure has novel features which are of considerable biological interest.A structure for

2、nucleic acid has already been proposed by Pauling and Corey (1). They kindly made their manuscript available to us in advance of publication. Their model consists of three intertwined chains, with the phosphates near the fibre axis, and the bases on the outside. In our opinion, this structure is uns

3、atisfactory for two reasons: (1) We believe that the material which gives the X-ray diagrams is the salt, not the free acid. Without the acidic hydrogen atoms it is not clear what forces would hold the structure together, especially as the negatively charged phosphates near the axis will repel each

4、other. (2) Some of the van der Waals distances appear to be too small.Another three-chain structure has also been suggested by Fraser (in the press). In his model the phosphates are on the outside and the bases on the inside, linked together by hydrogen bonds. This structure as described is rather i

5、ll-defined, and for this reason we shall not comment on it.We wish to put forward a radically different structure for the salt of deoxyribose nucleic acid. This structure has two helical chains each coiled round the same axis (see diagram). We have made the usual chemical assumptions, namely, that e

6、ach chain consists of phosphate diester groups joining -D-deoxyribofuranose residues with 3,5 linkages. The two chains (but not their bases) are related by a dyad perpendicular to the fibre axis. Both chains follow right- handed helices, but owing to the dyad the sequences of the atoms in the two ch

7、ains run in opposite directions. Each chain loosely resembles Furbergs2 model No. 1; that is, the bases are on the inside of the helix and the phosphates on the outside. The configuration of the sugar and the atoms near it is close to Furbergs standard configuration, the sugar being roughly perpendi

8、cular to the attached base. There is a residue on each every 3.4 A. in the z-direction. We have assumed an angle of 36 between adjacent residues in the same chain, so that the structure repeats after 10 residues on each chain, that is, after 34 A. The distance of a phosphorus atom from the fibre axi

9、s is 10 A. As the phosphates are on the outside, cations have easy access to them.The structure is an open one, and its water content is rather high. At lower water contents we would expect the bases to tilt so that the structure could become more compact.The novel feature of the structure is the ma

10、nner in which the two chains are held together by the purine and pyrimidine bases. The planes of the bases are perpendicular to the fibre axis. The are joined together in pairs, a single base from the other chain, so that the two lie side by side with identical z-co-ordinates. One of the pair must b

11、e a purine and the other a pyrimidine for bonding to occur. The hydrogen bonds are made as follows : purine position 1 to pyrimidine position 1 ; purine position 6 to pyrimidine position 6.If it is assumed that the bases only occur in the structure in the most plausible tautomeric forms (that is, wi

12、th the keto rather than the enol configurations) it is found that only specific pairs of bases can bond together. These pairs are : adenine (purine) with thymine (pyrimidine), and guanine (purine) with cytosine (pyrimidine).In other words, if an adenine forms one member of a pair, on either chain, t

13、hen on these assumptions the other member must be thymine ; similarly for guanine and cytosine. The sequence of bases on a single chain does not appear to be restricted in any way. However, if only specific pairs of bases can be formed, it follows that if the sequence of bases on one chain is given,

14、 then the sequence on the other chain is automatically determined.It has been found experimentally (3,4) that the ratio of the amounts of adenine to thymine, and the ration of guanine to cytosine, are always bery close to unity for deoxyribose nucleic acid.It is probably impossible to build this str

15、ucture with a ribose sugar in place of the deoxyribose, as the extra oxygen atom would make too close a van der Waals contact. The previously published X-ray data (5,6) on deoxyribose nucleic acid are insufficient for a rigorous test of our structure. So far as we can tell, it is roughly compatible

16、with the experimental data, but it must be regarded as unproved until it has been checked against more exact results. Some of these are given in the following communications. We were not aware of the details of the results presented there when we devised our structure, which rests mainly though not entirely on published experimental data and stereochemical arguments.It has not escaped our notice that the specific pairing we have postulated immediately sugges

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 其它中学文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号