电喷标定基础培训

上传人:小** 文档编号:91175531 上传时间:2019-06-26 格式:PPT 页数:98 大小:5.89MB
返回 下载 相关 举报
电喷标定基础培训_第1页
第1页 / 共98页
电喷标定基础培训_第2页
第2页 / 共98页
电喷标定基础培训_第3页
第3页 / 共98页
电喷标定基础培训_第4页
第4页 / 共98页
电喷标定基础培训_第5页
第5页 / 共98页
点击查看更多>>
资源描述

《电喷标定基础培训》由会员分享,可在线阅读,更多相关《电喷标定基础培训(98页珍藏版)》请在金锄头文库上搜索。

1、电喷标定基础培训,上汽技术中心 动力总成部 杨飞赟,目录,EMS基本原理 EMS的硬件与软件 EMS控制策略内容 标定的流程,EMS基本原理,系统基本功能 EMS发动机管理系统的基本功能是根据驾驶者的意愿设置相应的扭矩输出。 具体地说,就是利用加速踏板位置传感器反映当前驾驶者的驾驶意愿,中央电控单元将认为当前的加速踏板位置传感器的测量值对应着一个特定的输出扭矩,为了获得这个对应的扭矩,中央电控单元将在采集各类发动机工况参数和车辆运行参数的基础上,协调各个输出控制信号,如: - 气缸进气量 - 喷油量 - 点火正时 以达到要求的输出扭矩,同时系统将监测当前运行参数的变化情况。,EMS基本原理,系

2、统辅助功能 EMS系统同时广泛采用了辅助的开环和闭环控制功能,包括: 怠速控制 闭环控制 燃油蒸发排放控制 巡航控制 降低NOx排放的排气再循环控制(EGR) 降低HC排放的二次空气喷射控制,EMS基本原理,由于多种因素的共同作用,这些辅助功能已被提高到了一个重要的位置。这些因素包括: 要求降低尾气排放的法规 对进一步提高燃油经济性的不懈追求 对安全性和驾驶舒适性的更高要求,EMS基本原理,系统扩展 EMS系统也可进行扩展,以集成以下配置: - 涡轮增压器和可变进气歧管控制(可提高动力输出) - 发动机阀门正时可变的凸轮轴控制 (可降低燃油消耗和排放,同时提高动力输出) - 爆震控制、发动机转

3、速控制和车速控制(可保护发动机和车辆)。,EMS基本原理,系统基本控制策略 EMS(ME7/M7)系列的发动机管理系统采用的是基于扭矩控制的控制策略。 使用该控制策略,可以使系统针对不同发动机和使用环境,方便灵活地集成众多功能。 大多数辅助开环和闭环控制功能都会体现在对发动机扭矩的影响上,这经常导致同时出现相互矛盾的要求。 该控制策略则能够区分出这些相互矛盾的需求的优先程度,并执行最至关重要的需求,这也是基于扭矩控制的控制策略的优势所在。,EMS基本原理,系统接口 在ME7系统中,中央控制单元采用CAN(Controller Area Network,控制器局域网)总线与车内掌管其它系统的不同

4、控制单元保持通信与互相协作。 这种协作的一个例子是当进行换档时,控制单元可操纵自动变速箱的ECU来执行扭矩的减少,从而减少变速箱的磨损。 同样,如果安装了TCS(牵引控制系统),当感受到车轮滑动时,它的ECU会把相应的数据传递给控制单元,使其降低发动机扭矩。 这也是采用基于扭矩的柔性响应控制的另一个好处。,EMS基本原理,系统诊断 由于器件故障将可能导致严重的安全或排放问题,在线诊断系统(On-Board Diagnosis)是发动机管理系统的标准配置。 利用在线诊断,系统可以诊断出象空气流量计、电子节气门体、氧传感器、碳罐阀等诸多器件的故障。 ME7系统可满足OBD和EOBD标准。,M7系统

5、结构图,ME7系统结构图,主要电子零部件,主要电子零部件,主要电子零部件,电子节气门体,电子油门踏板,主要零部件功能,主要零部件功能,ECU硬件原理示意图,ECU内部模块,ECU管脚分配,ECU线束原理图,M(E)7系统功能,项目功能需求表(FR),发动机在燃烧作功冲程中产生的动能由下列因素所确定: - 进气门关闭时进入的可供燃烧的进气量; 驾驶员通过加速踏板的机械连接直接控制节气门开度 怠速调节器 - 同时进入的可供燃烧的燃油量; 喷油量与喷油正时的控制 - 点火火花开始点燃空燃混合气的着火点。 点火正时与闭合角的控制,发动机性能的影响因素,1 空气和燃油蒸汽 2 碳罐控制阀 3 通往蒸发排

6、放控制系统 4 废气 5 有可调开度的EGR阀门 6 空气质量流量(大气压力) 7 空气质量流量(进气管压力) 8 新鲜空气冲量(燃烧室压力) 9 残余废气量 10 废气 11 进气门 12 排气门 节气门开启角,“气”,“气”的控制,节气门控制 对火花塞式发动机而言,决定功率输出的首要因素是气缸进气量。 发动机管理系统主要是通过调节节气门开度来控制气缸进气的。,“气”的控制,常规系统 常规的设计是依靠机械的连接来控制节气门,借助系缆或机械拉杆传递加速踏板的运动,相应地转变成节气门的动作。 发动机冷车启动时,为了克服较大的内部摩擦消耗需要吸入较多的空气和喷入额外多的燃油;同时,当辅助设备如空调

7、压缩机被打开时,气缸也需要吸入更多的空气来弥补驱动功率的损失。,“气”的控制,这些额外的空气要求可通过空气旁通执行器来满足,这种执行器能控制一个绕过节气门的额外气流通道。 另一种选择是使用一种可随发动机需求变化而相应调整节气门最小开度的节气门执行器来满足这种要求。 但这两种情况下为满足发动机需求波动而对空气流量进行电子控制的范围都是有限的,仅局限在某些特定工况,比如说怠速控制。,“气”的控制,带有ETC的系统 如下图所示,ETC(电子节气门控制)控制涉及部件包括:加速踏板、EMS ECU、和电子节气门总成。,“气”的控制,ETC系统部件说明: - 加速踏板:内有两个输出信号同向变化的电位器负责

8、监控踏板的位置。踏板的位置由驾驶员决定。 - 电子节气门体:包括节气阀门、节气门执行器(一直流电机)、节气门开度传感器。其中开度传感器是两个输出反向互补的电位器。 ME7系统将ETC控制与负责点火、喷油和大量辅助功能的发动机管理ECU集成在一起,而无需为ETC配备一个专门的ECU。,“气”的控制,ETC系统控制原理: 加速踏板位置传感器将感受到的加速踏板位置信号传递给ECU, ECU计算出相应的节气门开度,在根据发动机当前运行工况作适当调整后,产生一个相应的控制信号传递给电子节气门总成的节气门执行器。 节气门执行器能够对ECU的输出控制信号做出精确的响应,同时两个节气门位置传感器又将当前的节气

9、门开度信息反馈给ECU,由ECU再做适当的反馈控制。 电子节气门总成上的两个反相互补节气门位置传感器连同加速踏板上监控踏板运动行程的两个电位器,构成了整个ETC监控功能的一部分,能提供系统所期望的冗余度。,“气”的控制,在整个发动机运行期间,ETC控制系统会不断地检查和监测所有能影响节气门开度的传感器信号和计算。 一旦遇到故障,系统的初始反应是回复到基于冗余传感器信号的状态并进行数据处理。如果没有冗余的信号可用,则节气门开度调整到默认的位置。,“气”的控制,尽管节气门控制是控制发动机进气的主要方式,仍然有许多其它的系统型式也能够实现对进入气缸中的新鲜空气和残留废气数量的调整,包括: - 可变进

10、排气阀门正时 - 排气再循环(EGR) - 可变进气歧管布置(动态增压) - 废气涡轮增压,多点喷油系统(MPI) 1 燃油 2 空气 3 节气门 4 进气歧管 5 喷油嘴 6 发动机,外部形成混合气的系统 这种供油系统最显著的特点是:空燃混合气在燃烧室外的进气歧管内形成。 多点喷油系统 多点喷射为上述混合气形成准则提供了理想的基础。在这种系统中,每个气缸都配有自己的喷油嘴,把燃油直接喷射到进气门前面部位。 喷油量根据进气量、发动机水温和转速等条件精确计算的。,“油”,“油”的控制,燃油喷射 为满足汽车平稳运行和低排放的严格要求,每一个工作循环都需要提供完全精确的混合气配制。 喷射的燃油量必须

11、精确计量以匹配吸入的空气量。如今,准确的喷油正时也变得越来越重要,因此,ME7系统采用的是多点燃油喷射,即每个气缸都配有一个电磁喷油器。 喷油器由ECU控制,可在准确的时间点将精确的燃油量直接喷向气缸进气门附近,这样大大避免了喷出燃油沿进气管壁的凝结。因为这种凝结将导致所需混合气空燃比的偏离。 此外,对于多点燃油喷射系统来说,因为发动机进气歧管只通过供燃烧的空气,所以可以优化其形状和尺寸来实现发动机的动态增压。,在提前点火的点火时刻 曲轴和活塞的位置 TDC: 上止点, BDC: 下止点 Z: 点火时刻,点火提前角是用曲轴的上止点(TDC)来表示。提前角是以TDC前的角度来度量的。相应的数字称

12、为点火(正时提前)角。 把点火时间向后移到TDC,称之为“延迟点火正时”;把点火时间向前移到更早的点火点,称之为“提前点火”,如图所示。 点火正时的选择必须满足以下准则: -最大的发动机功率 -最佳的燃油经济性 -发动机无爆震 -排气清洁 但这些要求不可能同时得到满足,必须根据具体情况制定折衷的方案。要达到要求的扭矩,最佳点火提前角取决于若干因素,最重要的因素包括发动机转速、负荷、发动机结构、燃料品质和运行工况等(如起动、怠速、全速和倒拖工况)。,“火”,发动机爆震是由于火花塞点燃的火焰前锋尚未到达而部分空燃混合气已突然自燃引起的,这种情况属于点火提前角过大。爆震不仅导致燃烧室的温度升高,反过

13、来又可以引起提前着火,而且会引起压力的升高。 现在,在点燃式发动机中使用高压缩比比以前常用的压缩比带来更大的爆震危险。两种不同形式的爆震应当加以区别。 -发动机低转速高负荷时的加速爆震(可清楚的听见金属敲击声) -发动机高转速高负荷时的高速爆震 长时间的爆震对发动机有极大的损害(气缸盖垫片和轴承损坏,活塞损坏)以及火花塞的损坏 。,爆震,控制策略,如综述中所述,ME7系统除了闭环控制,怠速闭环控制,爆震控制之外,还在于ME7的控制系统是基于扭矩控制这个平台的,下面将对以下ME7系统的主要计算、控制策略进行论述:,基于扭矩控制的理论,气缸进气量的计算,点火正时的计算和控制,喷油计算和控制,对不同

14、运行工况的处理,怠速闭环控制,爆震控制,的闭环控制,蒸发排放控制,增压控制,安全保护,驾驶性能改善,基于扭矩控制的策略,发动机管理系统的首要任务是将驾驶指令反映到发动机的功率和扭矩输出上。不论是在恒速前进还是加速前进,驾驶员都需要发动机输出扭矩克服前进中的阻力。 此外,系统内许多功能子系统(如怠速控制和转速调速等)参与对行驶伺服机构(如电子牵引力控制,自动变速箱)和通常的汽车附属功能(如空调等)的控制,并将这些设备对发动机功率输出调整要求告诉EMS系统。例如,在启动空调压缩机时,空调控制系统就会向ECU请求增加输出功率。 早期发动机运行时,作为控制参数的气缸充气量、燃油质量和点火正时都被认为是

15、控制指令而直接执行,当各种可能互相矛盾的需求同时出现时,彼此之间没有协调。,基于扭矩控制的策略,采用基于扭矩控制策略的ME7系统则前进了一步,它首先对各部件的要求进行优先级判断和协调,然后再利用得出的控制参数去实现指定扭矩的输出。 这种协调控制的策略能确保发动机在各个工况下实现排放和耗油的优化。 此外,采用基于扭矩的控制策略,就能比较方便地做到:根据不同的发动机和客户使用要求,将众多的不同控制功能集成到不同型号的发动机管理系统中,供用户自由选择。也就是说,从而使ME7型发动机管理系统具有更好的移植性。,基于扭矩控制的策略,基于扭矩控制的策略,发动机的扭矩计算 燃烧过程产生的内部扭矩是基于扭矩控

16、制的ME7系统的基本参数。 发动机的实际输出扭矩还要从中扣除摩擦、泵气损失、驱动辅助器件(水泵、交流发电机等)和传动装置所消耗的能量。 基于扭矩控制的最终目的是能够选择最精确的发动机参数以精确地响应驾驶指令,同时还要补偿损失以及满足给其他辅助部件供能的需要。,基于扭矩控制的策略,实际输出扭矩的调节 ME7系统在扭矩生成的时候采用两种方法调节输出扭矩: 一种是控制电子节气门(ETC)改变进气量,这是一种逐渐缓慢过渡的方法,另外一种是采用调节点火正时或关闭某个气缸喷油的快速响应方式。 采用缓慢过渡的方法实际上就是控制进气量的方法,主要负责稳态运行;而快速响应的方式(调节点火正时)可以在扭矩生成时对动力变化非常迅速地响应。,对不同工况的运行处理,可用不同的扭矩输出和发动机转速来区分发动机的不同运行工况。 右图显示了发动机运行的不同工况范围对应的扭矩和转速范围。,对不同工况的运行处理,起动 在起动过程中,进气量、喷油量和点火时间根据专门的计算结果来调整。 起动后工况 起动后工况(紧接在起动过程结束之后)的混

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 商业/管理/HR > 管理学资料

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号