机械专业外文翻译挖掘机的机械学和液压学

上传人:206****923 文档编号:91103518 上传时间:2019-06-22 格式:DOC 页数:10 大小:117.50KB
返回 下载 相关 举报
机械专业外文翻译挖掘机的机械学和液压学_第1页
第1页 / 共10页
机械专业外文翻译挖掘机的机械学和液压学_第2页
第2页 / 共10页
机械专业外文翻译挖掘机的机械学和液压学_第3页
第3页 / 共10页
机械专业外文翻译挖掘机的机械学和液压学_第4页
第4页 / 共10页
机械专业外文翻译挖掘机的机械学和液压学_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《机械专业外文翻译挖掘机的机械学和液压学》由会员分享,可在线阅读,更多相关《机械专业外文翻译挖掘机的机械学和液压学(10页珍藏版)》请在金锄头文库上搜索。

1、装订线毕业设计(论文)报告纸Multi-Domain Simulation:Mechanics and Hydraulics of an Excavator AbstractIt is demonstrated how to model and simulate an excavator with Modelica and Dymola by using Modelica libraries for multi-body and for hydraulic systems. The hydraulic system is controlled by a “load sensing” contr

2、oller. Usually, models containing 3-dimensional mechanical and hydraulic components are difficult to simulate. At hand of the excavator it is shown that Modelica is well suited for such kinds of system simulations.1. IntroductionThe design of a new product requires a number of decisions in the initi

3、al phase that severely affect the success of the finished machine. Today, digital simulation is therefore used in early stages to look at different concepts. The view of this paper is that a new excavator is to be designed and several candidates of hydraulic control systems have to be evaluated. Sys

4、tems that consist of 3-dimensional mechanical and of hydraulic components like excavators are difficult to simulate. Usually, two different simulation environments have to be coupled. This is often inconvenient, leads to unnecessary numerical problems and has fragile interfaces. In this article it i

5、s demonstrated at hand of the model of an excavator that Modelica is well suited for these types of systems. The 3-dimensional components of the excavator are modeled with the new, free Modelica MultiBody library. This allows especially to use an analytic solution of the kinematic loop at the bucket

6、 and to take the masses of the hydraulic cylinders, i.e., the “force elements”, directly into account. The hydraulic part is modeled in a detailed way, utilizing pump, valves and cylinders from HyLib, a hydraulics library for Modelica. For the control part a generic “load sensing” control system is

7、used, modeled by a set of simple equations. This approach gives the required results and keeps the time needed for analyzing the problem on a reasonable level. 2. Modeling ChoicesThere are several approaches when simulating a system. Depending on the task it may be necessary to build a very precise

8、model, containing every detail of the system and needing a lot of information, e.g., model parameters. This kind of models is expensive to build up but on the other hand very useful if parameters of a well defined system have to be modified. A typical example is the optimization of parameters of a c

9、ounterbalance valve in an excavator (Kraft 1996). The other kind of model is needed for a first study of a system. In this case some properties of the pump, cylinders and loads are specified. Required is information about the performance of that system, e.g., the speed of the pistons or the necessar

10、y input power at the pump shaft, to make a decision whether this design can be used in principle for the task at hand. This model has therefore to be “cheap”, i.e., it must be possible to build it in a short time without detailed knowledge of particular components. The authors intended to build up a

11、 model of the second type, run it and have first results with a minimum amount of time spent. To achieve this goal the modeling language Modelica (Modelica 2002), the Modelica simulation environment Dymola (Dymola 2003), the new Modelica library for 3-dimensional mechanical systems “MultiBody” (Otte

12、r et al. 2003) and the Modelica library of hydraulic components HyLib (Beater 2000) was used. The model consists of the 3-dimensional mechanical construction of the excavator, a detailed description of the power hydraulics and a generic “load sensing” controller. This model will be available as a de

13、mo in the next version of HyLib. 3. Construction of ExcavatorsIn Figure 1 a schematic drawing of a typical excavator under consideration is shown. It consists of a chain track and the hydraulic propel drive which is used to manoeuvre the machine but usually not during a work cycle. On top of that is

14、 a carriage where the operator is sitting. It can rotate around a vertical axis with respect to the chain track. It also holds the Diesel engine, the hydraulic pumps and control system. Furthermore, there is a boom, an arm and at the end a bucket which is attached via a planar kinematic loop to the

15、arm. Boom, arm and bucket can be rotated by the appropriate cylinders. Figure 2 shows that the required pressures in the cylinders depend on the position. For the “stretched” situation the pressure in the boom cylinder is 60 % higher than in the retracted position. Not only the position but also the

16、 movements have to be taken into account. Figure 3 shows a situation where the arm hangs down. If the carriage does not rotate there is a pulling force required in the cylinder. When rotating excavators can typically rotate with up to 12 revolutions per minute the force in the arm cylinder changes its sign and now a

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 其它中学文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号