线性代数+课件与复习线性代数复习提纲

上传人:E**** 文档编号:91094292 上传时间:2019-06-21 格式:PPT 页数:202 大小:1.77MB
返回 下载 相关 举报
线性代数+课件与复习线性代数复习提纲_第1页
第1页 / 共202页
线性代数+课件与复习线性代数复习提纲_第2页
第2页 / 共202页
线性代数+课件与复习线性代数复习提纲_第3页
第3页 / 共202页
线性代数+课件与复习线性代数复习提纲_第4页
第4页 / 共202页
线性代数+课件与复习线性代数复习提纲_第5页
第5页 / 共202页
点击查看更多>>
资源描述

《线性代数+课件与复习线性代数复习提纲》由会员分享,可在线阅读,更多相关《线性代数+课件与复习线性代数复习提纲(202页珍藏版)》请在金锄头文库上搜索。

1、线性代数,复习提纲,张春晖 整理,第一章 行列式,把 个不同的元素排成一列,叫做这 个元 素的全排列(或排列),个不同的元素的所有排列的种数用 表示, 且 , 全排列,逆序数为奇数的排列称为奇排列,逆序数为 偶数的排列称为偶排列,在一个排列 中,若数 , 则称这两个数组成一个逆序,一个排列中所有逆序的总数称为此排列的逆 序数, 逆序数,分别计算出排列中每个元素前面比它大的数 码个数之和,即算出排列中每个元素的逆序数, 每个元素的逆序数之总和即为所求排列的逆序数,方法2,方法1,分别计算出排在 前面比它大的 数码之和,即分别算出 这 个元素 的逆序数,这 个元素的逆序数之总和即为所求 排列的逆序

2、数, 计算排列逆序数的方法,定义,在排列中,将任意两个元素对调,其余元素不动,称为一次对换将相邻两个元素对调,叫做相邻对换,定理,一个排列中的任意两个元素对换,排列改 变奇偶性,推论,奇排列调成标准排列的对换次数为奇数, 偶排列调成标准排列的对换次数为偶数, 对 换, n阶行列式的定义, n阶行列式的性质,)余子式与代数余子式, 行列式按行(列)展开,)关于代数余子式的重要性质, 克拉默法则,克拉默法则的理论价值,定理,定理,定理,定理,第二章 矩阵,扬州大学数学科学学院, 矩阵的定义, 方阵 列矩阵 行矩阵,两个矩阵的行数相等、列数也相等时,就称 它们是同型矩阵, 同型矩阵和相等矩阵, 零矩

3、阵 单位矩阵,交换律,结合律, 矩阵相加,运算规律, 数乘矩阵, 矩阵相乘,运算规律,n阶方阵的幂, 方阵的运算,方阵的行列式,运算规律,转置矩阵, 一些特殊的矩阵,对称矩阵,反对称矩阵,幂等矩阵,正交矩阵,对角矩阵,对合矩阵,上三角矩阵,主对角线以下的元素全为零的方阵称为上三 角矩阵,下三角矩阵,主对角线以上的元素全为零的方阵称为下三 角矩阵,伴随矩阵,定义, 逆矩阵,相关定理及性质,矩阵的分块,主要目的在于简化运算及便于 论证,分块矩阵的运算规则与普通矩阵的运算规则 相类似, 分块矩阵, 初等变换的定义,换法变换,倍法变换,消法变换,三种初等变换都是可逆的,且其逆变换是 同一类型的初等变换

4、,反身性,传递性,对称性, 矩阵的等价,三种初等变换对应着三种初等矩阵, 初等矩阵,由单位矩阵 经过一次初等变换得到的矩阵称 为初等矩阵,()换法变换:对调两行(列),得初等 矩阵 ,()倍法变换:以数 (非零)乘某行( 列),得初等矩阵 ,()消法变换:以数 乘某行(列)加到另 一行(列)上去,得初等矩阵 ,经过初等行变换,可把矩阵化为行阶梯形矩 阵,其特点是:可画出一条阶梯线,线的下方全 为0;每个台阶只有一行,台阶数即是非零行的 行数,阶梯线的竖线(每段竖线的长度为一行) 后面的第一个元素为非零元,也就是非零行的第 一个非零元,例如, 行阶梯形矩阵,经过初等行变换,行阶梯形矩阵还可以进一

5、 步化为行最简形矩阵,其特点是:非零行的第一 个非零元为1,且这些非零元所在列的其它元素都 为0,例如, 行最简形矩阵,对行阶梯形矩阵再进行初等列变换,可得到 矩阵的标准形,其特点是:左上角是一个单位矩 阵,其余元素都为0,例如, 矩阵的标准形,所有与A等价的矩阵组成的一个集合,称为一 个等价类,标准形 是这个等价类中形状最简单的 矩阵,定义, 矩阵的秩,定义,定理,行阶梯形矩阵的秩等于非零行的行数, 矩阵秩的性质及定理,定理,9 初等矩阵与初等变换的关系,定理,推论,一、求矩阵的秩,二、求逆矩阵的初等变换法,三、解矩阵方程的初等变换法,典 型 例 题,求矩阵的秩有下列基本方法,()计算矩阵的

6、各阶子式,从阶数最高的 子式开始,找到不等于零的子式中阶数最大的一 个子式,则这个子式的阶数就是矩阵的秩,一、求矩阵的秩,()用初等变换即用矩阵的初等行(或 列)变换,把所给矩阵化为阶梯形矩阵,由于阶 梯形矩阵的秩就是其非零行(或列)的个数,而 初等变换不改变矩阵的秩,所以化得的阶梯形矩 阵中非零行(或列)的个数就是原矩阵的秩,第一种方法当矩阵的行数与列数较高时,计 算量很大,第二种方法则较为简单实用,例 求下列矩阵的秩,解 对 施行初等行变换化为阶梯形矩阵,注意 在求矩阵的秩时,初等行、列变换可 以同时兼用,但一般多用初等行变换把矩阵化成 阶梯形,二、求逆矩阵的初等变换法,例 求下述矩阵的逆

7、矩阵,解,注意 用初等行变换求逆矩阵时,必须始终 用行变换,其间不能作任何列变换同样地,用 初等列变换求逆矩阵时,必须始终用列变换,其 间不能作任何行变换,Take care !,三、解矩阵方程的初等变换法,或者,例,解,第三章,扬州大学数学科学学院,线性代数,分量全为实数的向量称为实向量,分量全为复数的向量称为复向量, 向量的定义,定义,向量的相等,零向量,分量全为0的向量称为零向量,负向量,向量加法, 向量的线性运算,数乘向量,向量加法和数乘向量运算称为向量的线性运 算,满足下列八条运算规则:,除了上述八条运算规则,显然还有以下性质:,若干个同维数的列(行)向量所组成的集合 叫做向量组,定

8、义, 线性组合,定义, 线性表示,定理,定义,定义, 线性相关,定理,定理,定义, 向量组的秩,等价的向量组的秩相等,定理,矩阵的秩等于它的列向量组的秩,也等于 它的行向量组的秩,定理,设向量组B能由向量组A线性表示,则向量 组B的秩不大于向量组A的秩,推论,推论,推论(最大无关组的等价定义),设向量组 是向量组 的部分组,若向量组 线性无关,且向量组 能由向量组 线性表示, 则向量组 是向量组 的一个最大无关组, 向量空间,定义, 子空间,定义, 基与维数,向量方程, 齐次线性方程组,解向量,解向量的性质,性质,性质,定义,定理,定义,向量方程, 非齐次线性方程组,解向量的性质,性质,性质,

9、解向量,向量方程 的解就是方程组 的解向量,()求齐次线性方程组的基础解系, 线性方程组的解法,第一步:对系数矩阵 进行初等行变换,使其 变成行最简形矩阵,第三步:将其余 个分量依次组成 阶 单位矩阵,于是得齐次线性方程组的一个基础解系,()求非齐次线性方程组的特解,将上述矩阵中最后一列的前 个分量依次作为 特解的第 个分量,其余 个分量全部取 零,于是得,即为所求非齐次线性方程组的一个特解,一、向量组线性关系的判定,二、求向量组的秩,三、向量空间的判定,四、基础解系的证法,五、解向量的证法,典 型 例 题,一、向量组线性关系的判定,研究这类问题一般有两个方法,方法1 从定义出发,整理得线性方

10、程组,方法 利用矩阵的秩与向量组的秩之间关 系判定,例 研究下列向量组的线性相关性,解一,整理得到,解二,分析,证明,证明向量组的一个部分组构成极大线性无 关组的基本方法就是:,分析,根据极大线性无关组的定义来证,它往往还与向量组的秩相联系,证明,求一个向量组的秩,可以把它转化为矩阵的 秩来求,这个矩阵是由这组向量为行(列)向量 所排成的,如果向量组的向量以列(行)向量的形式给 出,把向量作为矩阵的列(行),对矩阵作初等 行(列)变换,这样,不仅可以求出向量组的秩, 而且可以求出极大线性无关组,二、求向量组的秩,若矩阵 经过初等行(列)变换化为矩阵 , 则 和 中任何对应的列(行)向量组都有相

11、同的 线性相关性,解,判断向量的集合是否构成向量空间,需看集合 是否对于加法和数乘两种运算封闭若封闭,则构 成向量空间;否则,不构成向量空间,解,三、向量空间的判定,例 证明与基础解系等价的线性无关的向量组 也是基础解系,四、基础解系的证法,分析,(3)方程组的任一解均可由该向量组线性表示,(1)该组向量都是方程组的解;,(2)该组向量线性无关;,要证明某一向量组是方程组 的基础解 系,需要证明三个结论:,证明,注 当齐线性方程组有非零解时,基础解系的取 法不唯一,且不同的基础解系之间是等价的,第四章,线性代数,扬州大学数学科学学院,定义,向量内积的定义及运算规律,定义,向量的长度具有下列性质

12、:, 向量的长度,定义, 向量的夹角,所谓正交向量组,是指一组两两正交的非零 向量向量空间的基若是正交向量组,就称为正 交基,定理,定义, 正交向量组的性质,施密特正交化方法,第一步 正交化,第二步 单位化,定义, 正交矩阵与正交变换,方阵 为正交矩阵的充分必要条件是 的行 (列)向量都是单位向量,且两两正交,定义 若 为正交矩阵,则线性变换 称为 正交变换,正交变换的特性在于保持线段的长度不变,定义, 方阵的特征值和特征向量, 有关特征值的一些结论,定理,定理 属于同一个特征值的特征向量的非零线性 组合仍是属于这个特征值的特征向量, 有关特征向量的一些结论,定义,矩阵之间的相似具有(1)自反

13、性;(2)对称性; (3)传递性, 相似矩阵, 有关相似矩阵的性质,若 与 相似,则 与 的特征多项式 相同,从而 与 的特征值亦相同,(4) 能对角化的充分必要条件是 有 个线 性无关的特征向量,(5) 有 个互异的特征值,则 与对角阵相似, 实对称矩阵的相似矩阵,定义, 二次型,二次型与它的矩阵是一一对应的,定义, 二次型的标准形, 化二次型为标准形,定义, 正定二次型, 惯性定理,注意, 正定二次型的判定,一、证明所给矩阵为正交矩阵,典 型 例 题,二、将线性无关向量组化为正 交单位向量组,三、特征值与特征向量的求法,四、已知 的特征值,求与 相关矩阵的特征值,五、求方阵 的特征多项式,

14、六、关于特征值的其它问题,七、判断方阵 可否对角化,八、利用正交变换将实对称 矩阵化为对角阵,九、化二次型为标准形,一、证明所给矩阵为正交矩阵,证明,将线性无关向量组化为正交单位向量组,可 以先正交化,再单位化;也可同时进行正交化与 单位化,二、将线性无关向量组化为正交单位向量组,解一 先正交化,再单位化,解二 同时进行正交化与单位化,第三步 将每一个特征值代入相应的线性方程组, 求出基础解系,即得该特征值的特征向量,三、特征值与特征向量的求法,第一步 计算 的特征多项式;,第二步 求出特征多项式的全部根,即得 的全部 特征值;,解 第一步 计算 的特征多项式,第三步 求出 的全部特征向量,解,四、已知A的特征值,求与A相关 矩阵的特征值,解,五、求方阵 的特征多项式,解,六、关于特征值的其它问题,方法一,方法二,方法三,解,七、判断方阵 可否对角化,解 (1) 可对角化的充分条件是 有 个互异的 特征值下面求出 的所有特征值,解 第一步 求A的特征值由,八、利用正交变换将实对称矩阵化为对角阵,九、化二次型为标准形,解 第一步 将 表成矩阵形式,解,预祝各位考试顺利, 取得好成绩!,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号