曲柄(导杆)滑块机构设计分析外文翻译

上传人:jiups****uk12 文档编号:90902507 上传时间:2019-06-20 格式:DOC 页数:8 大小:272.51KB
返回 下载 相关 举报
曲柄(导杆)滑块机构设计分析外文翻译_第1页
第1页 / 共8页
曲柄(导杆)滑块机构设计分析外文翻译_第2页
第2页 / 共8页
曲柄(导杆)滑块机构设计分析外文翻译_第3页
第3页 / 共8页
曲柄(导杆)滑块机构设计分析外文翻译_第4页
第4页 / 共8页
曲柄(导杆)滑块机构设计分析外文翻译_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《曲柄(导杆)滑块机构设计分析外文翻译》由会员分享,可在线阅读,更多相关《曲柄(导杆)滑块机构设计分析外文翻译(8页珍藏版)》请在金锄头文库上搜索。

1、Mechanism Introduction to Mechanism Mechanisms may be categorized in several different ways to emphasize their similarities and differences. One such grouping divides mechanisms into planar, sphe-rical, and spatial categories. All three groups have many things in common; the criterion, which disting

2、uishes the groups, however, is to be found in the characteristics of the motions of the links. A planar mechanism is one in which all particles describe plane curves in space and all these curves lie in parallel planes; i. e., the loci of all points are plane curves parallel to a single common plane

3、. This characteristic makes it possible to represent the locus of any chosen point of a planar mechanism in its true size and shape on a single drawing or figure. The motion transformation of any such mechanism is called coplanar. The plane four-bar linkage, the plate cam and follower, and the slide

4、r-crank mechanism are familiar examples of planar mechanisms. The vast majority of mechanisms in use today are planar. A spherical mechanism is one in which each link has some point which remains stationary as the linkage moves and in which the stationary points of all links lie at a common location

5、; i.e., the locus of each point is a curve contained in a spherical surface, and the spherical surfaces defined by several arbitrarily chosen points are all concentric. The motions of all particles can therefore be completely described by their radial projections, or shadows, on the surface of a sph

6、ere with properly chosen center. Hookes universal joint is perhaps the most familiar example of a spherical mechanism.Spherical linkages are constituted entirely of revolute pairs. A spheric pair would produce no additional constraints and would thus be equivalent to an opening in the chain, while a

7、ll other lower pairs have nonspheric motion. In spheric linkages, the axes of all revolute pairs must intersect at a point.Spatial mechanisms, include no restrictions on the relative motions of the particles. The motion transformation is not necessarily coplanar, nor must it be concentric. A spatial

8、 mechanism may have particles with loci of double curvature. Any linkage which contains a screw pair, for example, is a spatial mechanism, since the relative motion within a screw pair is helical. Thus, the overwhelming large category of planar mechanisms and the category ofspherical mechanisms are

9、only special cases, or subsets, of the all-inclusive category spatial mechanisms. They occur as a consequence of special geometry in the particular orientations of their pair axes: If planar and spherical mechanisms are only special cases of spatial mechanisms, why is it desirable to identify them s

10、eparately?Because of the particular geometric conditions, which identify these types, many simplifications are possible in their design and analysis. As pointed out earlier, it is possible to observe the motions of all particles of a planar mechanism in true size and shape from a single direction. I

11、n other words, all motions can be represented graphically in a single view. Thus, graphical techniques are well suited to their solution. Since spatial mechanisms do not all have this fortunate geometry, visualization becomes more difficult and more powerful techniques must be developed for their an

12、alysis. Since the vast majority of mechanisms in use today are planar, one might question the need of the more complicated mathematical techniques used for spatial mechanisms. There are a number of reasons why more powerful methods are of value even though the simpler graphical techniques have been

13、mastered. 1. They provide new, alternative methods, which will solve the problems in a different way. Thus they provide a means of checking results. Certain problems by their nature may also be more amenable to one method than another. 2. Methods which are analytical in nature are better suited to s

14、olution by calculator or digital computer than graphical techniques.3. Even though the majority of useful mechanisms are planar and well suited to graphical solution, the few remaining must also be analyzed, and techniques should be known for analyzing them. 4. One reason that planar linkages are so

15、 common is that good methods of analysis for the more general spatial linkages have not been available until quite recently. Without methods for their analysis, their design and use has not been common, even though they may be inherently better suited in certain applications.5. We will discover that

16、 spatial linkages are much more common in practice than their formal description indicates. Consider a four-bar linkage. It has four links connected by four pins whose axes are parallel. This parallelism is a mathematical hypothesis; it is not a reality. The axes as produced in a shop in any shop, no matter how good will only-be approximately parallel. If they are far out of parallel, there will be binding in no uncertain terms, and the mechanism will on

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 其它中学文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号