超空泡鱼雷水冲压发动机进水管道水力特性计算

上传人:jiups****uk12 文档编号:90694554 上传时间:2019-06-15 格式:DOCX 页数:51 大小:1.69MB
返回 下载 相关 举报
超空泡鱼雷水冲压发动机进水管道水力特性计算_第1页
第1页 / 共51页
超空泡鱼雷水冲压发动机进水管道水力特性计算_第2页
第2页 / 共51页
超空泡鱼雷水冲压发动机进水管道水力特性计算_第3页
第3页 / 共51页
超空泡鱼雷水冲压发动机进水管道水力特性计算_第4页
第4页 / 共51页
超空泡鱼雷水冲压发动机进水管道水力特性计算_第5页
第5页 / 共51页
点击查看更多>>
资源描述

《超空泡鱼雷水冲压发动机进水管道水力特性计算》由会员分享,可在线阅读,更多相关《超空泡鱼雷水冲压发动机进水管道水力特性计算(51页珍藏版)》请在金锄头文库上搜索。

1、本科毕业设计论文摘要基于水与金属基燃料反应的水冲压发动机是一种新型的水下动力装置,这种水下推进装置基本上只携带金属基燃料,主要靠吸入外部的海水作氧化剂,利用金属基燃料与海水反应产生的大量能量及放出的大量轻质气体,来实现鱼雷在水下的高速行进。由于金属/水冲压发动机不需要携带专门的氧化剂,所以极大地增加了动力系统的能量密度,被认为是推进超空泡航行器的理想动力系统。进水管路是金属/水反应冲压发动机的一个重要部件,其作用是向发动机提供满足水/燃比要求的海水。本文主要通过进水管道的压力损失角度来分析其工作特性,而总的压力损失包括三个部分:入口处的局部损失,管道内的沿程损失,还有流体自身的粘性损失,其中管

2、道内部的沿程损失为主要部分。主要工作包括:一、建立了进水管路水力计算的数值模型。二、基于商用FLUENT软件,建立进水管路数值模型的求解方法,并对所建立的数值模型和求解方法进行验证。三、在不同航行器速度及深度条件下,计算进水管路工作状态,分析进水管路工作特性。经过分析认为,数值模型及求解方法合理,模拟计算的结果基本符合真实流动特性,计算结果真实可信。工作特性分析结果表明:进水道总压损失和流量均随航行器航行深度及速度而发生变化。随着来流速度的增大,进水管路总压损失增大;随着工作深度的增加,总压损失增大,随来流速度和航行深度增大,流量增大。本文研究所得结果可为金属/水冲压发动机的工程应用提供有益的

3、参考。关键词:水冲压发动机,进水管道,数值模拟,压力损失。ABSTRACTIn the super-cavitations torpedoes, based on reaction of water and metal water ramjet fuel is a new underwater power plant. It just takes metal fuel, and utilizes the energy and gas, which comes from the reaction of water and metal fuel, to realize high-velocity

4、movement. Theres no need to take specific oxidant, so it can improve the high energy density of the power system. Water piping is an important component of metal water ramjet .In order to study the working characteristics of water piping, on the basis of one-dimensional design and theoretical analys

5、is, Design structural parameters of water pipeline under the working state, and operate a numerical simulation. In this paper, the pressure loss through the inlet pipe perspective is the keystone to analyze the performance characteristics. Total pressure loss consists of three parts: the local losse

6、s of the entrance, losses along the pipeline within, as well as their viscous fluid loss, loss along the pipe inside the main part. In the simulation, the first two-dimensional flow model to establish the pipeline, and then import all kinds of boundary conditions, choice and iteration for solving fl

7、uid equations, the final condition of the simulation by solving a variety of examples, drawn fluid through the inlet pipe pressure loss that the pressure difference . In order to verify the accuracy of numerical simulation, theoretical calculation is needed. The theoretical calculation by calculatin

8、g the losses along the pipeline are internal, theoretical results calculated with the numerical simulation results of certain errors, the theoretical value is less than the simulation results. Further analysis of error causes: Numerical simulation of the real analog channels through the fluid flow,

9、the calculated pressure loss, including the existence of the real flow field in a variety of flow loss. The theoretical calculation only calculate along losses inside of pipelines, other losses such as partial losses and viscous losses due to statistical limitations, cannot be the exact value, which

10、 is the basic reason for the error generated . After analysis, numerical simulation can be considered the results are consistent with the true flow characteristics. Finally, under different conditions of pressure difference order list, respectively, according to the speed and the pressure difference

11、 between the pressure difference between the depth of relationship, facture two-dimensional form. The results show that with the increase of exit pressure, total pressure loss reduce; with the increase of flow velocity, total pressure loss increases; with the increase of working depth, total pressur

12、e loss increase. On the basis of the paper, the design should add valves and other losses, by three-dimensional numerical simulations; further work should be done to study different angle of attack work on the properties of water pipeline, inlet pipe at different working parameters coupled together

13、through the engine system. After the engine performance analysis, further study will be done on the dynamic performance characteristics water pipelineKEY WORDS: water ramjet, water pipeline, numerical simulations, pressure loss目录摘要IABSTRACTIII第一章 绪论11 本文研究背景11.1俄罗斯的“暴风”超空泡鱼雷11.2超空泡武器关键技术突破之一金属水反应发动机

14、41.3 水冲压发动机的工作原理41.4 水冲压发动机的重要部件之一进水管道5第二章 流动分析及方法选择62.1 管内流动的一般特性62.1.1 管道流动的两种流态62.1.2 管道内充分发展的湍流72.1.3 总流伯努利方程102.1.4 管道中的沿程损失112.2 计算方法的选择142.3 CFD方法简介15第三章 建模求解223.1 FLUENT软件基本简介223.2 建模求解过程263.2.1 管道物理模型263.2.2 利用FLUENT求解器求解28第四章 计算结果分析364.1 显示计算结果364.1.1 读出不同工况下的压力差364.1.2 显示压力等值线图374.1.3 绘制速

15、度矢量图。374.1.4 绘制管道速度分布图384.2 计算结果统计整理394.3计算结果分析404.3.1压力分析404.3.2管道压力差的校核434.4 速度分析44第五章 流动计算分析综述475.1 速度与压力差的关系:475.2 深度与压力差的关系:475.3 综述48参考文献49致谢50毕业设计小结51V第一章 绪论1 本文研究背景1.1俄罗斯的“暴风”超空泡鱼雷所谓超空泡鱼雷(supercavitation torpedo)是指低阻超高速鱼雷。这种鱼雷航行时,在其表面及其附近区域形成汽(气)体包层,从而大大降低了航行阻力,使航行速度得以大幅度提高。目前航行速度最快的常规鱼雷是英国的“矛鱼”(Spearfish)鱼雷,其浅水最高航速为75节,俄罗斯的超空泡鱼雷航行速度已超过200节。超空泡鱼雷的出现源自空化理论,即当液体内部局部压力降低到一定程度时,在液体或固体与液体交界面上,会形成蒸汽或气体的空穴,即空泡。超空泡鱼雷利用其特殊的外形设计,随着动力系统的不断加速,使其表面及附近区域处于空化状态,并辅以适当的人工充气,使鱼雷处于汽(气)体包层中,并保持汽(气)体包层在鱼雷航行中的稳定性。超空泡鱼雷一般具有多个(多级)动力推进装置,以满足其初始、加速及巡航(超空化)等不同航行阶段的需要。超空泡鱼雷目前仍属于直航鱼雷,其最大优点在于速度快,不受各种水声和

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 其它中学文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号