通信工程专业外文翻译--码分多址

上传人:206****923 文档编号:90582018 上传时间:2019-06-13 格式:DOC 页数:13 大小:111.86KB
返回 下载 相关 举报
通信工程专业外文翻译--码分多址_第1页
第1页 / 共13页
通信工程专业外文翻译--码分多址_第2页
第2页 / 共13页
通信工程专业外文翻译--码分多址_第3页
第3页 / 共13页
通信工程专业外文翻译--码分多址_第4页
第4页 / 共13页
通信工程专业外文翻译--码分多址_第5页
第5页 / 共13页
点击查看更多>>
资源描述

《通信工程专业外文翻译--码分多址》由会员分享,可在线阅读,更多相关《通信工程专业外文翻译--码分多址(13页珍藏版)》请在金锄头文库上搜索。

1、外文原文Code division multiple accessCode division multiple access (CDMA) is a channel access method used by various radio communication technologies. It should not be confused with the mobile phone standards called cdmaOne, CDMA2000 (the 3G evolution of cdmaOne) and WCDMA (the 3G standard used by GSM c

2、arriers), which are often referred to as simply CDMA, and use CDMA as an underlying channel access method.One of the concepts in data communication is the idea of allowing several transmitters to send information simultaneously over a single communication channel. This allows several users to share

3、a band of frequencies (see bandwidth). This concept is called multiple access. CDMA employs spread-spectrum technology and a special coding scheme (where each transmitter is assigned a code) to allow multiple users to be multiplexed over the same physical channel. By contrast, time division multiple

4、 access (TDMA) divides access by time, while frequency-division multiple access (FDMA) divides it by frequency. CDMA is a form of spread-spectrum signalling, since the modulated coded signal has a much higher data bandwidth than the data being communicated.Steps in CDMA ModulationEach user in a CDMA

5、 system uses a different code to modulate their signal. Choosing the codes used to modulate the signal is very important in the performance of CDMA systems. The best performance will occur when there is good separation between the signal of a desired user and the signals of other users. The separati

6、on of the signals is made by correlating the received signal with the locally generated code of the desired user. If the signal matches the desired users code then the correlation function will be high and the system can extract that signal. If the desired users code has nothing in common with the s

7、ignal the correlation should be as close to zero as possible (thus eliminating the signal); this is referred to as cross correlation. If the code is correlated with the signal at any time offset other than zero, the correlation should be as close to zero as possible. This is referred to as auto-corr

8、elation and is used to reject multi-path interference. In general, CDMA belongs to two basic categories: synchronous (orthogonal codes) and asynchronous (pseudorandom codes).Code division multiplexing (Synchronous CDMA)Synchronous CDMA exploits mathematical properties of orthogonality between vector

9、s representing the data strings. For example, binary string 1011 is represented by the vector (1, 0, 1, 1). Vectors can be multiplied by taking their dot product, by summing the products of their respective components (for example, if u = (a, b) and v = (c, d), then their dot product uv = ac + bd).

10、If the dot product is zero, the two vectors are said to be orthogonal to each other. Some properties of the dot product aid understanding of how W-CDMA works.Each user in synchronous CDMA uses a code orthogonal to the others codes to modulate their signal. An example of four mutually orthogonal digi

11、tal signals is shown in the figure. Orthogonal codes have a cross-correlation equal to zero; in other words, they do not interfere with each other. In the case of IS-95 64 bit Walsh codes are used to encode the signal to separate different users. Since each of the 64 Walsh codes are orthogonal to on

12、e another, the signals are channelized into 64 orthogonal signals. The following example demonstrates how each users signal can be encoded and decoded. Asynchronous CDMAWhen mobile-to-base links cannot be precisely coordinated, particularly due to the mobility of the handsets, a different approach i

13、s required. Since it is not mathematically possible to create signature sequences that are both orthogonal for arbitrarily random starting points and which make full use of the code space, unique pseudo-random or pseudo-noise (PN) sequences are used in asynchronous CDMA systems. A PN code is a binar

14、y sequence that appears random but can be reproduced in a deterministic manner by intended receivers. These PN codes are used to encode and decode a users signal in Asynchronous CDMA in the same manner as the orthogonal codes in synchronous CDMA (shown in the example above). These PN sequences are s

15、tatistically uncorrelated, and the sum of a large number of PN sequences results in multiple access interference (MAI) that is approximated by a Gaussian noise process (following the central limit theorem in statistics). Gold codes are an example of a PN suitable for this purpose, as there is low co

16、rrelation between the codes. If all of the users are received with the same power level, then the variance (e.g., the noise power) of the MAI increases in direct proportion to the number of users. In other words, unlike synchronous CDMA, the signals of other users will appear as noise to the signal of interest and interfere slightly with the desired signal in proportion to number of users.All forms of CDMA use spread spectrum process gain to allow receivers to

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 其它中学文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号