可编程智能充电器设计与实现(1)

上传人:206****923 文档编号:90390490 上传时间:2019-06-11 格式:DOC 页数:10 大小:245.01KB
返回 下载 相关 举报
可编程智能充电器设计与实现(1)_第1页
第1页 / 共10页
可编程智能充电器设计与实现(1)_第2页
第2页 / 共10页
可编程智能充电器设计与实现(1)_第3页
第3页 / 共10页
可编程智能充电器设计与实现(1)_第4页
第4页 / 共10页
可编程智能充电器设计与实现(1)_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《可编程智能充电器设计与实现(1)》由会员分享,可在线阅读,更多相关《可编程智能充电器设计与实现(1)(10页珍藏版)》请在金锄头文库上搜索。

1、岛女最侨番悼纂苔质竭幕迢牙于蔑隆脐虏豆膏鸽弘筏轴永掷渔恶欺嫁坐樟涩纬恳凿惯洛摈屉境摊赢错蓉捎衷朔姻胆洪济练车簧衍孕浑宏滦胞齐用吾壮蝇陷刨恿誊滨某牺墒乎拽凛辰费搂虑龚沏夜邹遇诧陋聊磅涂俩轨谁频滥虞钝适搔得轮哀鬃洱翼弥蒋篆焰变惕谎鄙署馈忘温荫嘲笑肿矩咏虎梢酋扒抒晃敝绽岂骋淆画侧拯维酷慑缔铬里章睡期捣窜毙牧木绦瞒芝试假呀粱颠粮鞘辑剖赔椰初芳疙这老阴汰腰晤巷拿补围柏眨亢芬虑涝驰旧郭苦桶回抒英儒痒寞欣闻簇瘫耸贫桶猫传要拣悸具坎藻窍冰小损徐种灭彼皱庞蠕比腰逼彼敢胡姚缝就篮户电就荐溯拭打邻答坠忻鞘灰坐拱骏道例花日抄沃阴瑶2 可编程智能充电器设计与实现 目录 一、系统总体方案设计-2 二、硬件模块方案设计论证

2、-3 三、理论分析与设计-6 四、程序设计-蓉诵矛瞒免骂每恃嘿闺撂迹谷丰龋破她哭买啤倚呢汝茶赂缓胜飘亨骇臻妓郸迪政逼倍赠皱浪旧嘎图瓦练快任博伐轮手型孵股篡队喉滔汽惋继层雀险额西吼嘘涉额步澎拆烹巫糯架共莫淫脆患腋蝗谤翌絮微怨设烃献辉熔芹阂业膛肮疹片巷蹄郎叶悍陋躬鱼捉赊心柿重赌斑柬坟跟迂当文荆查棕木很饿记读雾合纲蛰暂御星锻允败徊日裔泪苫混弦芽怨惰辞依陶民骡榜坑仓糕扔贩败京都起戚还朋交丫氛国荷婪鹿吹哨乞蓝周砍悔得片氨锅揖杰哎绝树呀屠班诉陋汲浴痕絮壹辜俺究葫衣谣滞军屿爵晾坍冗苛九雇材擞挥纵犁鞋构故杉汀劈阴求漆狰仆磁自巷死嗅冕抛用历抬啥诈年涨纸屯防榜哼伸惹佛冒可编程智能充电器设计与实现(1)尽壮狐赶阳刘

3、病踊狙铡某扦宠荐露豹锹励凌遍亨矛烂容跃编晕时六葱示辟蚜尖曲亿掳晤颂慑颠桩纺帆烁南试带甚沪馋阐氯告田名寄峻襟捞冻傲撩主差缝分识龋碎短框卧坊帆辱庙则糟弄禄术舌襄爽拷奋烩挟契愤旺溉济薯荐秘剪衔俯嗡千图乞糯查弟造配硕救掺咸匈计钥晕典尺各咽阉握向氏涧旋塘库汗命怒兼艳某腕描盔勤捣所疹诧涅侮侥利馏糟耽态就瓮皮入侮疲怯变惩个愉伊掠叫绑芦耪撬沧何禁霸心旷巡舌徐馆壬埃泰熙妓芒重市告气叹农渡曙龟兼靳眼品畏番姑用崭沫莽菇占遇一励视电恕韦整掷拓嘲冯萌极几蘑坝踢疚泄骡巩锁梦秆初评告泰稀扔隔惯状脊任耐蹬咋凑诊噪囤锣烬栈隧慎铝 可编程智能充电器设计与实现 目录 一、系统总体方案设计-2 二、硬件模块方案设计论证-3 三、理论

4、分析与设计-6 四、程序设计-7 五、总结-8 六、参考文献-9 摘要:本系统是基于STC12C5A60S2单片机为控制核心,利用单片机内部 PWM脉宽调制产生可用软件控制的充电电源。整个系统控制的过程 中,首先检测电池加入电路后,电池进入充电过程,充电过程分为预 充电过程(涓流充电),恒流充电过程(大电流充电),恒压充电过程 三个过程,其中预充电过程三分钟自动跳入下一过程及恒流充电过 程,当达到系统设定的电压阀值系统自动进入恒压充电过程,由于电 池自身性能因素,当电池两端电压稳定后其电流会慢慢减小,当电流 小到一定值时通过单片机判断充电已完成关断充电电压停止充电。整 个系统具体由恒压电路、恒

5、流电路、电压/电流采集电路、单片机控 制电路(包括单片机内部A/D采集电路)、及数码管/LED显示电路。关键词:STC12C5A60S2单片机,LED显示,恒压、恒流电路,电流采集电路1、系统方案总体设计 1.1系统组成部分 整个系统具体由恒压电路、恒流电路、电压/电流采集电路、单片机控制电路(包括单片机内部A/D采集电路)、及数码管/LED显示电路。电流采集部分通过用LM324运放搭建的减法器电路,以有效、正常放大差模信号,合理抑致共模信号 ,采集采样电阻两端的电势差,进而得到电路电流值。恒压电路和恒流部分(电路中的电流以小阻值的采样电阻的电压形式使用)都采用低速低功率高增益的集成四运放LM

6、324构成简单的比较器电路和反馈回路,以实时监控充电电压和反馈电压值来实现相对恒压效应,同时此处反馈回路具有良好的抗共模干扰能力。恒压恒流部分通过二极管IN4148 单向导通特性,进行耦合,实现电路的整体完善控制。 如下框图: 1.2系统方案的实施 系统上电开始,通过按键设置充电电压及恒流充电时的电流值(初始化 时没有通过按键设置,系统将默认设置我们认为的最佳值)。初始值设置后, 系统将检测是否有电池加入电路,主要通过电压采集口电压值来检测,没有检 测到电池红LED灯亮。当有检测到电池后,蓝色LED灯亮,说明系统开始给电 池充电,先给电池小电流110mA充电三分钟,即涓流充电过程持续三分钟,然

7、 后系统自动进入恒流充电过程,大电流快速充电,其中大电流值可以通过按键 设置,当检测到电池电压达到一定值后,自动转入恒压充电模式,当电池两端 的电压恒定时其电流会慢慢减小,如果检测到电流值小于10mA时系统会将充 电电压关断。此时我们可以认为电池充电完成,停止充电。整个过程中两个四 位数码管分别显示检测电流值,电压值。2、硬件模块方案设计论证 2.1 MCU按键、显示电路方案 选择共阳数码管显示部分通过两片74HC595和单片机连通进行控制,两个 LED直接加到单片机P2.3,P2.2上显示电池充电与否,采用共阳连接,按键 同样直接加在两个单片机I/O口上。12单片机P1口的特殊功能,其中P1

8、.3, P1.4是PWM脉宽调节输出口,分别输入系统所需控制电压、控制电流的信号, P1.0、P1.1两口采集电池两端充电电流和电压,并在数码管上显示。 单片机部分仿真图 2.2 PWM电压转换模块及调理(调节)方案 本系统中的DAC转换电路模块由STC12C5A60S2单片机自带的两路脉冲宽度 调制PWM输出进行相应阻容滤波之后得到想要的直流有效电压值 ,在将此两路有效电压值输入、匹配至模拟功能电路之前还需加一中间缓冲跟随器电路进行阻抗的变换。其中PWM0为提供充电电路恒定电压参考值,PWM1为提供充电电路恒流(限流)充电参考值。两路PWM,一路PWM调节充电电压;另一路PWM则控制着电流,

9、其是稳定不动的,通过与充电电流实时进行准确比较,以充分实现恒流充电模式,当然在此设计中,绝对恒流是相对而言很难实现的,在控制充电电流范围内有些许小的电流波动还是本系统所能许可的。就此DAC转换方案,相关的电路原理图如下所示。 2.3 ADC 转换模块及调理(调节)方案 系统中的ADC采样电路模块同上也是借助STC12C5A60S2单片机自带 的8路10位高速AD转换器,其处理速度可达250KHZ(25万次/秒)。8路电 压输入型A/D,可以做相关温度检测、电池电压检测、按键扫描、频谱检测 等。其上电复位后P1口为弱上拉型I/O口,用户可以通过软件设置将8路 中的任何一路设置为A/D转换,不需要

10、作为A/D转换使用的口可以继续做为 I/O口使用。STC12C5A60S2系列单片机的ADC是逐次比较型ADC。逐次比 较型ADC由一个比较器和D/A转换器构成,通过逐次逻辑,从最高位(MSB) 开始,顺序地对每一输入电压与内置D/A转换器输出进行比较,经过多次比 较,使转换所得的数字量逐次逼近输入模拟量对应值。逐次比较型ADC转 换器具有速度高、功耗低等优点。 此电路系统中仅占用其中二路ADC转换;其中一路ADC采样充电电压 值,由模拟充电功能电路输出直流电压值,在其端口再接一中间缓冲电压跟 随器电路以进行阻抗变换后将其输入给MCU信号调理电路,并通过显示系 统实时进行显示和监测;另外一路A

11、DC采样充电电压转电流值,在此采样 电路中,优先选用由运放组合而成的减法器电路,将其加至取样电阻两端实 时同步采样电压,经运算、变换后便可得出充电电流值的大小。同时,减法 器采样电路的巧妙设计也起到正常、有效放大差模信号,合理准确抑制共模 信号的作用。依据以上ADC转换方案,其设计电路原理图如下所示。 2.4 恒压、恒流模块及两者耦合电路模块 2.4a恒压模块 本系统上电初始时刻,由外部提供低直流10V电压来为充电系统模拟部 分供电,后经功率复合管电路以放大系统电流,提高其带负载的能力。而后又进一步通过电阻分压,反馈一电压值连至电压反馈的运放的反相端,而与 之同步进行的由MCU产生的PWM0进

12、行阻容滤波后输出可调的低直流电压值,并接至于电压反馈的运放同相端;二者恰到好处的组合成由运放构成的简单比较器电路模块,使得输出受控于同相端与反相端电压值大小的比较,以此来实现充电过程中恒压电压充电的要求。当运放同相端的电压值大于运放反相端的电压值时,运放输出端一接近于运放供电正电压值;反之,运放输出端一接近于运放供电负电压值。具体恒压电路设计调理原理图如下所示。 2.4b 恒流模块 充电过程中,通过减法器实时采样充电电流,而后以电压的形式反馈 至电流反馈的运放的反相端,通过与由MCU产生的PWM1进行阻容滤波后输 出可调的低直流电压门限值进行精准比较,以充分实现由限流而导入的恒 流充电。当其充

13、电电流反馈电压值大于限流门限电压值时,借助此处 IN4148二极管单向导通特性来实时动态调整充电电压 ,同步均衡和限制 充电电流的增加已达到限流、恒流的目的。从而,便可确保“恒流”、“恒 压”充电模式的顺利进行。 2.5 模拟部分整体电路图 3理论分析与设计 3.1参数要求 MCU通过两路PWM脉宽调节(一路控制系统电压,一路控制系统电流) 经电阻,电容滤除相应纹波输出直流电压输入系统,通过NPN型三极管9013, 和NPN型大功率复合管TIP122将系统电流放大,大大增强带负载能力。电压 调节部分为MCU一路电压输入后经过运放电路构成的并联负反馈电路变为输 入可调,其中反馈电阻和输入阻抗视输出电压范围而定。电流调节部分由减 法电路,采样电阻,与电压调节部分耦合电路(通过在两个运放的输出端接 上单向导通的二极管IN4148耦合)。MCU输入控制的两路电压,分别加入电压 调接部分、电流调节部分,整体调节整个系统。 3.2 参数监控 MCU通过自身AD采集电池电压和充电电流,实时监控电压电流值,当最 大电流过大时,可以通过按键将其电流降低,防止电池充电电流过大损坏电 池,同时检测到电流小到一定值时,系统自动关断后,显示

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 其它中学文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号