【精选】光纤气体传感器总结

上传人:豆浆 文档编号:897273 上传时间:2017-05-20 格式:DOC 页数:13 大小:383.50KB
返回 下载 相关 举报
【精选】光纤气体传感器总结_第1页
第1页 / 共13页
【精选】光纤气体传感器总结_第2页
第2页 / 共13页
【精选】光纤气体传感器总结_第3页
第3页 / 共13页
【精选】光纤气体传感器总结_第4页
第4页 / 共13页
【精选】光纤气体传感器总结_第5页
第5页 / 共13页
点击查看更多>>
资源描述

《【精选】光纤气体传感器总结》由会员分享,可在线阅读,更多相关《【精选】光纤气体传感器总结(13页珍藏版)》请在金锄头文库上搜索。

1、光纤气体传感器调研总结光纤气体检测综述1.1 国内外光纤气体检测技术的发展气体传感器是一种把气体中的特定成分检测出来, 并转换成电信号的器件, 人们很早就开始了气体传感器的研究, 将其用来对有毒、有害气体的探测, 对易爆、易燃气体的安全报警。对人类生产生活中所需了解的气体进行检测、分析研究等, 使得它在工业生产和日常生活中起到耳目的作用。光纤传感技术是一项正在发展中的具有广阔前景的新型高技术。由于光纤本身在传递信息过程中具有许多特有的性质, 如光纤传输信息时能量损耗很小, 给远距离遥测带来很大方便。光纤材料性能稳定, 不受电磁场干扰, 在高温、高压、低温、强腐蚀等恶劣环境下保持不变所以光纤传感

2、器从问世到如今, 一直都在飞速发展 1。世界上已有多种光纤传感器,诸如位移、速度、加速度、压力、流量等物理量都实现了不同性能的光纤传感。光纤气体传感技术是光纤传感技术的一个重要应用分支,主要基于气体的物理或化学性质相关的光学现象或特性。近年来,它在环境监测、电力系统以及油田、矿井、辐射区的安全保护等方面的应用显示出其独特的优越性 2。1989 年,西安应用光学研究所的郭栓运对光纤气体传感器展开研究,在应用光学杂志上介绍了差分光谱吸收的基本原理,给出了实验框图和应用实例 15。1992 年,中国矿业大学的王耀才等在光纤通信技术杂志上介绍了吸收型光纤瓦斯传感技术和干涉型瓦斯传感器的原理,并对其在煤

3、矿重的应用前景做了探讨 16。1997 年,山东矿业学院的曹永茂等人针对光纤瓦斯传感器光波波长的选择展开讨论,提出根据传感器技术指标来确定光纤瓦斯传感器的基本参数,并建立了相应的数学模型 17。1999 年,大连理工大学刘文琦等人报道了一种新型透射式光纤甲烷传感器,用 1.31 InGaAsP 型 LED 做光源测量甲烷浓度,通过研究制备一种纳米级多透射膜,增强了甲烷气体对激光的光谱吸收 18。同年,香港理工大学,靳伟应用调制光盘技术对 DFB 激光器惊醒调制,研究光纤气体传感器的分时多路复用(TDM)技术。靳伟建立了计算仿真模型,仿真结果表明由 20 个甲烷气体传感器组成的光纤气体传感器阵列

4、的检测灵敏度可以达到 2000ppm19-20。之后靳伟博士与清华大学喻洪波合作,实现了连续波调频技术复用的光纤气体多点传感系统 21。2000 年,浙江大学叶险峰等在对 CH4 分子近红外洗后光谱分析比较的基础上考虑与光纤的低损耗窗口相一致以及价格等因素,采用价廉的 1.3波段的 LED 作为光源,实现了对甲烷气体的检测,检测灵敏度为 1300ppm/m6。2001 年,燕山大学王玉田等根据甲烷气体的吸收光谱,研究了一种利用价格低廉的 LED 作为光源的新型投射式光纤甲烷气体传感器,选择两种同型号的LED 光源作为差分吸收信号,光源驱动器自动实行交替斩波 7。为了保证系统对甲烷气体检测的精度

5、,采取了两项措施,一是设置了参考通道,二是采用了光源反馈通道以增强 LED 光源的稳定性 8。2005 年,张爱军 3对光谱吸收型光纤气体进行了研究。每一种气体都有固有的吸收谱,当光源的发射光波与气体的洗后光波长相吻合时,就会放生共振洗后,其洗后强度与该气体的浓度有关,通过测量光的吸收强度就可测量气体的浓度。以甲烷气体为例,通过实验研究,分析了吸收路径长度对传感器灵敏度的影响,增加吸收路径的长度,有利于提高传感器的灵敏度。气体体浓度较小时,通过增加吸收路径的长度来提高传感器的灵敏度效果明显。2006 年,中国科学院安徽光机所的阚瑞峰等可调谐二极管激光吸收光谱与多次反射池相结合,研制了用于地面环

6、境空气中甲烷含量检测的便携式吸收光谱仪,并利用不同体积分数的甲烷气体对系统进行了测试,取得了很好的测试结果 9。王晓梅等分析了 TDLAS 谐波信号的特征,建立了谐波信号的数学模型,利用较高浓度气体的二次谐波信号作为曲线,对待测气体的谐波信号进行线性回归 10。2007 年,燕山大学王艳菊等采用双光路、双波长来解决光源功率波动、光纤损耗等问题,在接受端采用旋转双色滤光器和单探测器消除了双光电器件的飘逸对测量结果的影响 11。同年,中国科学院安徽光机所的陈玖等应用自平衡测量方法,消除了激光的共模噪声和其他同性干扰的影响,该方法不用加信号调制和所想放大器,减小了系统装置的体积,易于集成便携式痕量气

7、体检测仪12。2008 年,褚衍平等通过光纤光栅和压电陶瓷对快带光源 LED 进行调制,获得了与气体吸收峰对应的窄带反射出射光,检测二次谐波实现气体浓度的高灵敏测量,利用测量气室和参考气室的二次谐波比值来消除吸收系数随环境的变化、光源光功率的波动和光路干扰对测量精度的影响 13。2009 年,华南理工大学肖兵等基于自平衡激光接收器和数字锁定放大器构造了 TDLAS 汽车尾气动态浓度测量系统,自平衡激光接收器通过引入一个低频反馈回路去维持吸收信号和参考信号的自动平衡,数字锁定放大器由 DSP 芯片实现相关检测算法,提高了系统的测量灵敏度 14。2010 年,南京航空航天大学齐洁提出了基于光源扫描

8、的光纤气体传感器系统设计方案,设计了一种新的基于查分吸收院里的气体传感系统,能对单一气体记性对波段测定检测,同时可以完成多种气体共存环境的检测。提出了一种基于最小二乘的背景噪声消除方法。利用传感气室的输入和输出的拟合曲线相除的方法,实现了传感器输出的归一化,解决了传感器背景噪声漂移的问题,同时解决了浓度对气体吸收谱拟合线的影响,提高了测量精度 4。2012 年,张可可 5以比尔-郎伯定律为理论基础,研究利用光谱吸收法测量气体的浓度,根据 HIRAN 数据库,选择近红外区甲烷 2v3 带 R3 支的三条气体吸收线记性研究,并确定吸收谱线的相关参数。研究波长调制光谱与谐波检测理论,利用傅立叶级数展

9、开模型和泰勒级数展开模型分析各次谐波信号,在频率调制信号模型的基础上,采用频率-强度调制信号模型研究强度调制对各次谐波信号的影响。研究高斯线型和洛伦兹线型的各次谐波型号余波长调制系数的关系,确定各次谐波最佳的波长调制系数。对激光在光路中多次反射形成的标准具晓莹展开研究,为标准具噪声的抑制提供理论依据。专利方面,国内发明专利D 形光纤消逝场化学传感器 ,发明提出一种用于医疗、环境监控、食品安全等检测量的 D 形光纤消逝场化学传感器。 光纤生物传感器这是一种光纤生物传感器,用于测定环境中微生物的种类、含量等。 光纤液位传感器 ,一种光纤液位传感器,包括有光源,探测器和传感头。带有光纤气体传感器的传

10、感系统 专利号:CN101545860 发明人:夏华;JS戈德米尔;KT麦卡锡 ;A库马;R安尼格里;E伊尔梅茨;AV 塔瓦尔;Y赵。这是一种包括光纤芯(32)的光纤气体传感器(20),该传感器具有 位于光纤芯周围的具有不同调幅轮廓的第一和第二折射率周期调制光 栅结构(36、38)。光纤包层 (40)位于所述第一和第二折射率周期 调制光栅结构周围。敏感层(42)位于所述折射率周期调制光栅结构 的其中一个的光纤包层周围。该敏感层包括由 Pd 基合金制成的敏感材 料,该 Pd 基合金例如是纳米 PdOx、纳米Pd(x)Au(y)Ni(1-x-y)或纳米 Pd/Au/WOx。光纤气体传感器提供对来自

11、燃烧环境的局部温度校正气 体浓度和成分的测量。本发明也描述了具有一个或多个光纤气体传感 器的阵列的基于反射或基于透射的传感系统。 一种光纤气体传感器专利号:CN101059443 发明人:侯长军;霍丹群;张红英;廖海洋;郑小林;侯文生;杨军;皮喜田。这是一种光纤气体传感器,涉及检测光气及挥发性有机气体的光纤气体传感器。本发明传感器 主要包括入射光线和出射光纤、反应池及金属卟啉溶液等。由于本发明传感器具有操作简单、 成本低廉;能使待测气体与金属卟啉溶液敏感物质充分反应,显著提高检测的灵敏度;同一 反应池能对多种目标气体同时进行有效检测;从反应池的加料口加入不同的金属卟啉溶液, 就能对不同的目标气

12、体进行有效检测,检测范围广等特点,故本发明传感器可广泛应用于厂 房装修、室内装修、工业生产及精细化工等行业中检测光气及挥发性有机物气体,有利于环 境保护和人们的身心健康。 SENSING SYSTEM WITH OPTICAL FIBER GAS SENSOR ,专利号:JP2009244262 发明人:XIA HUA ; GOLDMEER JEFFREY SCOTT ; MCCARTHY KEVIN THOMAS ; KUMAR ADITYA ; ANNIGERI RAVINDRA ; YILMAZ ERTAN ; TAWARE AVINASH VINAYAK ; ZHAO YU。这个专利发

13、明了一种传感系统以及传感器。传感系统包括一组不同类别的光纤气体传感器,这些传感器通过温度修正测量气体浓度。光纤气体传感器包括光纤芯,第一和第二折射率周期性调制光栅结在光纤芯里有不同的振幅调制方法。光纤包层包裹着第一和第二折射率周期性调制光纤结构。传感层位于光纤包层结构中。传感层包括一个由 Pb 合金传感材料,如纳米级氧化铂等。光纤气体传感器是在燃烧环境中通过温度修正测量气体浓度。1.2 光纤气体传感器分类(1)光谱吸收型光纤气体传感器光谱法通过检测样气透射光强或反射光强的变化来检测气体浓度。每种气体分子都有自己的吸收谱特征,光源的发射谱只有在与气体吸收谱重叠的部分才产生吸收,吸收后的光强发生变

14、化。根据比尔-朗伯定律,当波长为 的单色光在充有待测气体的气室中传播距离为 L 后,其吸收后的光强为:I()=I 0()exp(- CL) (1)式(1)中,I 0()为波长为 的单色光透过不含待测气体的气室时的光强;C 为吸收气体的浓度; 为光通过介质的吸收系数。整理即:(2)LIC)ln(0通过检测通气前后光强的变化,就可以测出待测气体的浓度。利用介质对光吸收而使光产生衰减这一特性制成吸收型光纤气体传感器原理如图 1 所示。光源发出的光,由光纤送入气室,被气体吸收后,由出射光纤传至光电探测器,得到的信号光送入计算机进行信号处理,可得出气体浓度。图 1 光纤气体传感器原理框图(2)渐逝场型光

15、纤气体传感器渐逝场型光纤传感器是利用光纤界面附近的渐逝场被气体吸收峰衰减来测量气体浓度的方法,是一种功能性光纤传感器,从本质上说,可以认为是一种特殊的光纤光谱吸收型传感器。(3)荧光型光纤气体传感器这是一种通过测量与气体相应的荧光辐射来确定其浓度的光纤气体传感器。荧光可以由被测气体本身产生也可以由其相互作用的荧光染料产生。荧光物质受吸收光谱中特定波长的光照射时,被测气体的浓度既可以改变荧光辐射的强度,也可以改变其寿命。和吸收型光纤气体传感器相比,荧光行传感器使用波长(荧光波长)不同于激励波长。由于不同的荧光材料通常具有不同的荧光波长,因此荧光传感器对被测量的鉴别性好。实际上希望辐射波长和激励波

16、长离开的越远越好,在输出端可用廉价的波长滤波器将激励光和传感光分开。通常激励波长在可见光或红外区,这一波段上光源技术成熟,几个也比较低廉。(4)燃料指示剂型光纤气体传感器 一些气体在石英光纤低耗窗口内没有较强的吸收峰,或者虽有吸收峰但相应波长的光源或检测器不存在或太昂贵,解决这些问题的方法之一是应用燃料指示剂作为中间物来实现间接传感。燃料与被测气体发生化学反应,使得燃料的光学性质发生变化,利用光纤传感器测量这种变化,就可以得到被测气体的浓度信息。最常见的燃料指示剂光纤气体传感器是pH 值传感器,一些燃料指示剂的颜色会随着pH值得变化而变化,引起对光的吸收的变化。通过测量某些气体浓度变化带来的pH值变化,分析气体浓度信息。 图 21.3 光纤气体传感器的特点由于光纤本身传输损耗和微型结构,光纤气敏传感器存在两个基本限制:一是光线的低损耗传输窗口的限制,石英光纤只在

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 行业资料 > 其它行业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号