传感器原理及应用 教学课件 ppt 作者 程德福 第二章力传感器3

上传人:E**** 文档编号:89457688 上传时间:2019-05-25 格式:PPT 页数:48 大小:1.35MB
返回 下载 相关 举报
传感器原理及应用 教学课件 ppt 作者 程德福 第二章力传感器3_第1页
第1页 / 共48页
传感器原理及应用 教学课件 ppt 作者 程德福 第二章力传感器3_第2页
第2页 / 共48页
传感器原理及应用 教学课件 ppt 作者 程德福 第二章力传感器3_第3页
第3页 / 共48页
传感器原理及应用 教学课件 ppt 作者 程德福 第二章力传感器3_第4页
第4页 / 共48页
传感器原理及应用 教学课件 ppt 作者 程德福 第二章力传感器3_第5页
第5页 / 共48页
点击查看更多>>
资源描述

《传感器原理及应用 教学课件 ppt 作者 程德福 第二章力传感器3》由会员分享,可在线阅读,更多相关《传感器原理及应用 教学课件 ppt 作者 程德福 第二章力传感器3(48页珍藏版)》请在金锄头文库上搜索。

1、1,第三节 电容式传感器,优点:测量范围大、灵敏度高、结构简单、适应性强、动态响应时间短、易实现非接触测量等。 由于材料、工艺,特别是测量电路及半导体集成技术等方面已达到了相当高的水平,因此寄生电容的影响得到较好地解决,使电容式传感器的优点得以充分发挥。 应用:压力、位移、厚度、加速度、液位、物位、湿度和成分含量等测量之中。,电容器是电子技术的三大类无源元件(电阻、电感和电容)之一,利用电容器的原理,将非电量转换成电容量,进而实现非电量到电量的转化的器件或装置,称为电容式传感器,它实质上是一个具有可变参数的电容器。,2,各种电容式传感器,3,一、 工作原理与类型 (一)工作原理 用两块金属平板

2、作电极可构成电容器,当忽略边缘效应时,其电容C为 S极板相对覆盖面积; 极板间距离;r相对介电常数; 0 真空介电常数,0 8.85pF/m; 电容极板间介质的介电常数。 、S和r中的某一项或几项有变化时,就改变了电容C0、或S的变化可以反映线位移或角位移的变化,也可以间接反映压力、加速度等的变化;r的变化则可反映液面高度、材料厚度等的变化。,4,(二)类型,变极距型传感器,变面积型传感器,变介质型传感器,5,1、变极距型电容传感器,图中极板1固定不动,极板2为可动电极(动片),当动片随被测量变化而移动时,使两极板间距变化,从而使电容量产生变化 ,其电容变化量C为,C-特性曲线,C0极距为时的

3、初始电容量。,6,2、变面积型电容传感器 变面积型电容传感器中,平板形结构对极距变化特别敏感,测量精度受到影响。而圆柱形结构受极板径向变化的影响很小,成为实际中最常采用的结构,其中线位移单组式的电容量C在忽略边缘效应时为 l外圆筒与内圆柱覆盖部分的长度; r2、r1 圆筒内半径和内圆柱外半径。 当两圆筒相对移动l时,电容变化量C为,这类传感器具有良好的线性,大多用来检测位移等参数。,7,3、变介电常数型电容传感器 变介电常数型电容式传感器大多用来测量电介质的厚度、液位,还可根据极间介质的介电常数随温度、湿度改变而改变来测量介质材料的温度、湿度等。 若忽略边缘效应,单组式平板形厚度传感器如下图,

4、传感器的电容量与被厚度的关系为,x,动片,厚度测量,8,若忽略边缘效应,单组式平板形线位移传感器如下图,传感器的电容量与被位移的关系为,l,平板形,a、b、lx:固定极板长度和宽度及被测物进入两极板间的长度 ; :两固定极板间的距离; x、0:被测物的厚度和它的介电常数、空气的介电常数。,lx,9,若忽略边缘效应,圆筒式液位传感器如下图,传感器的电容量与被液位的关系为,液位传感器,h,C1,C,C2,可见,传感器电容量C与被测液位高度hx成线性关系。,2r1,2r2,hx,10,例:某电容式液位传感器由直径为40mm和8mm的两个同心圆柱体组成。储存灌也是圆柱形,直径为50cm,高为1.2m。

5、被储存液体的r2.1。计算传感器的最小电容和最大电容以及当用在储存灌内传感器的灵敏度(pF/L),解:,pF,11,二、 转换电路 (一) 电容式传感器等效电路 L包括引线电缆电感和电容式传感器本身的电感: r由引线电阻、极板电阻和金属支架电阻组成; C0为传感器本身的电容; Cp为引线电缆、所接测量电路及极板与外界所形成的总寄生电容; Rg是极间等效漏电阻,它包括极板间的漏电损耗和介质损耗、极板与外界间的漏电损耗介质损耗,其值在制造工艺上和材料选取上应保证足够大。,供电电源频率为谐振频率的1/31/2,12,将电容式传感器接入交流电桥的一个臂(另一个臂为固定电容)或两个相邻臂,另两个臂可以是

6、电阻或电容或电感,也可是变压器的两个二次线圈。其中另两个臂是紧耦合电感臂的电桥具有较高的灵敏度和稳定性,且寄生电容影响极小、大大简化了电桥的屏蔽和接地,适合于高频电源下工作。而变压器式电桥使用元件最少,桥路内阻最小,因此目前较多采用。,(二)测量电路,1、电桥电路,特点:高频交流正弦波供电; 电桥输出调幅波,要求其电源电压波动极小,需采用稳幅、稳频等措施; 通常处于不平衡工作状态,所以传感器必须工作在平衡位置附近,否则电桥非线性增大,且在要求精度高的场合应采用自动平衡电桥; 输出阻抗很高(几M至几十M),输出电压低,必须后接高输入阻抗、高放大倍数的处理电路。,13,交流电桥的多种形式,14,2

7、、二极管双T形电路 电路原理如图(a)。供电电压是幅值为UE、周期为T、占空比为50的高频方波。若将二极管理想化,则当电源为正半周时,电路等效成典型的一阶电路,如图(b)。其中二极管VD1导通、VD2截止,电容C1被以极其短的时间充电、其影响可不予考虑,电容C2的电压初始值为UE。根据一阶电路时域分析的三要素法,可直接得到电容C2的电流iC2如下:,C2,UE,(b),R,R,RL,C2,C1,VD1,VD2,iC1,iC2,+,+,UE,(a),C1,C1,C2,UE,RL,RL,R,R,R,R,+,+,+,+,iC1,iC2,iC1,iC2,正半周,负半周,15,同理,负半周时电容C1的平

8、均电流:,在R(RRL)/(RRL)C2T/2时, 电流iC2的平均值IC2可以写成下式:,故在负载RL上产生的电压为,16,电路特点: 线路简单,可全部放在探头内,大大缩短了电容引线、减小了分布电容的影响; 电源周期、幅值直接影响灵敏度,要求它们高度稳定; 输出阻抗为R,而与电容无关,克服了电容式传感器高内阻的缺点; 适用于具有线性特性的单组式和差动式电容式传感器。,17,3、差动脉冲调宽电路 又称差动脉宽(脉冲宽度)调制电路 利用对传感器电容的充放电使电路输出脉冲的宽度随传感器电容量变化而变化。通过低通滤波器得到对应被测量变化的直流信号。,右图为差动脉冲调宽电路原理图,图中C1、C2为差动

9、式传感器的两个电容,若用单组式,则其中一个为固定电容,其电容值与传感器电容初始值相等;A1、A2是两个比较器,Ur为其参考电压。,R2,双稳 态触 发器,VD1,VD2,A1,A2,A,B,R1,C1,C2,uAB,F,Q,Q,Ur,差动脉冲调宽电路,G,18,t,uA,uA,uB,uB,uAB,uAB,UF,UF,UG,UG,Ur,Ur,Ur,Ur,-U1,U1,T1,U1,-U1,0,0,0,0,0,0,0,0,0,0,T2,U1,U1,U1,U1,T1,T2,t,t,t,t,t,t,t,t,t,(a),(b),差动脉冲调宽电路各点电压波形图,U0,19,UAB经低通滤波后,得到直流电压U

10、0为,UA、UBA点和B点的矩形脉冲的直流分量; T1、T2 分别为C1和C2的充电时间;U1触发器输出的高电位。 C1、C2的充电时间T1、T2为,设R1R2R,则,因此,输出的直流电压与传感器两电容差值成正比。,Ur比较器的参考电压。,20,设电容C1和C2的极间距离和面积分别为 、 和S1、S2,将平行板电容公式代入上式,对差动式变极距型和变面积型电容式传感器可得 可见差动脉冲调宽电路能适用于任何差动式电容式传感器,并具有理论上的线性特性。这是十分可贵的性质。在此指出:具有这个特性的电容测量电路还有差动变压器式电容电桥和由二极管T形电路经改进得到的二极管环形检波电路等。 另外,差动脉冲调

11、宽电路采用直流电源,其电压稳定度高,不存在稳频、波形纯度的要求,也不需要相敏检波与解调等;对元件无线性要求;经低通滤波器可输出较大的直流电压,对输出矩形波的纯度要求也不高。,21,4、 运算放大器式电路 其最大特点是能够克服变极距型电容式传感器的非线性。其原理如图 将Cx = 代入上式得,-A,uo,C,Cx,u,运算放大器式 电路原理图,负号表明输出与电源电压反相。显然,输出电压与电容极板间距成线性关系,这就从原理上保证了变极距型电容式传感器的线性。这里是假设放大器开环放大倍数A=,输入阻抗Zi=,因此仍然存在一定的非线性误差,但一般A和Zi足够大,所以这种误差很小。,22,三、 主要性能、

12、特点和设计要点,(一) 主要性能 1、 静态灵敏度 是被测量缓慢变化时传感器电容变化量与引起其变化的被测量变化之比。对于变极距型其静态灵敏度kg为 可见其灵敏度是初始极板间距的函数,同时还随被测量而变化。减小可以提高灵敏度。但过小易导致电容器击穿(空气的击穿电压为3kVmm)。可在极间加一层云母片(其击穿电压大于 103kV/mm)或塑料膜来改善电容器耐压性能。,23,灵敏度取决于r2/r1,r2与r1越接近,灵敏度越高。虽然内外极筒原始覆盖长度与灵敏度无关,但不可太小,否则边缘效应将影响到传感器的线性。 另外,变极距型和变面积型电容式传感器可采用差动结构形式来提高静态灵敏度,一般提高一倍。例

13、如,对变面积型差动式线位移电容式传感器,其静态灵敏度为,对于圆柱形变面积型电容式传感器,其静态灵敏度为,可见,与单组式相比灵敏度提高了一倍。 变面积型和变介电常数型电容式传感器在忽略边缘效应时,其输入被测量与输出电容量呈线性关系,因而其静态灵敏度为常数,24,显然,输出电容C与被测量之间是非线性关系。 只有当(/1时,略去各非线性项后才能得到近似线性关系为CC0(/)。由于取值不能大,否则将降低灵敏度,因此变极距型电容式传感器常工作在一个较小的范围内(1cm至零点几mm),而且最大应小于极板间距的1/51/10。,2、非线性 对变极距型电容式传感器,当极板间距变化时,其电容量的变化:,25,可

14、见,差动式的非线性得到很大改善,灵敏度也提高了一倍。 如果电容式传感器输出量采用容抗XC=1/(C) ,那么被测量就与XC成线性关系,不需要满足 这一要求了。 在忽略边缘效应时,变面积型和变介电常数型(测厚除外)电容式传感器具有很好的线性,但实际上由于边缘效应引起极板或极筒间电场分布不均匀,导致非线性问题仍然存在,且灵敏度下降,但比变极距型好得多。,采用差动形式,并取两电容之差为输出量C,26,(二) 特点 1受温度影响极小 电容式传感器的电容值仅取决于电极的几何尺寸,一般与电极材料无关,有利于选择温度系数低的材料,又因本身发热极小,影响稳定性甚微。 2结构简单,适应多种场合,具有平均效应 这

15、种传感器结构简单,易于制造,易于保证高的精度;可做得体积很小,易于实现某些特殊要求的测量;电容式传感器一般用金属作电极、以无机材料作绝缘支承,因此能工作在高温、低温、强辐射及强磁场等恶劣的环境中,可承受很大的温度变化,承受高压力、高冲击、过载等;能测超高压和低压差,也能对带磁工件进行测量。当被测试件不允许采用接触测量时,电容传感器可完成测量任务。电容式传感器在采用非接触测量时,具有平均效应,可减小工件表面粗糙度等对测量的影响。,27,3动态响应好 电容式传感器由于极板间的静电引力很小,(约几个10-5N),需要的作用能量极小,又由于它的可动部分可做得很小很薄,即质量很轻,因此其固有频率很高,动态响应时间短,能在几MHz的频率下工作,特别适合动态测量。又由于其介质损耗小可以用较高频率供电,因此系统工作频率高。它可用于测量高速变化的参数,如测量振动、瞬时压力等。 电容式传感器还因带电极板间的静电引力极小,因此所需输入能量极小,所以特别适宜用来测量极低的压力、力和很小的加速度、位移等,可以做得很灵敏,分辨力非常高,能感受0.001m甚至更小的位移;由于其空气等介质损耗小,采用差动形式并接入电桥时产生的漂移极

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号