ems电磁干扰

上传人:suns****4568 文档编号:89210369 上传时间:2019-05-21 格式:DOC 页数:18 大小:1.28MB
返回 下载 相关 举报
ems电磁干扰_第1页
第1页 / 共18页
ems电磁干扰_第2页
第2页 / 共18页
ems电磁干扰_第3页
第3页 / 共18页
ems电磁干扰_第4页
第4页 / 共18页
ems电磁干扰_第5页
第5页 / 共18页
点击查看更多>>
资源描述

《ems电磁干扰》由会员分享,可在线阅读,更多相关《ems电磁干扰(18页珍藏版)》请在金锄头文库上搜索。

1、EMS电磁干扰第一部分 电磁骚扰的耦合机理 1、基本概念电磁骚扰传播或耦合,通常分为两大类:即传导骚扰传播和辐射骚扰传播。通过导体传播的电磁骚扰,叫传导骚扰;通过空间传播的电磁骚扰,叫辐射骚扰。上图传染病的模型非常近似:2、 电磁骚扰的常用单位 骚扰的单位通用分贝来表示,分贝的原始定义为两个功率的比:通常用 dBm 表示功率的单位,dBm 即是功率相对于 1mW 的值:通过以下的推导可知电压由分贝表示为(注意有一个前提条件为 R1=R2):通常用 dBuV 表示电压的大小,dBuV 即是电压相对于 1uV 的值。对于辐射骚扰通常用电磁场的大小来度量,其单位是 V/m。通常用的单位是dBuV/m

2、。3、传导干扰 a、共阻抗耦合 由两个回路经公共阻抗耦合而产生,干扰量是电流 i,或变化的电流 di/dt。、当两个电路的地电流流过一个公共阻抗时,就发生了公共阻抗耦合。我们在放大器中,级与级之间的一种耦合方式是“阻容”耦合方式,这就是一种利用公共阻抗进行信号耦合的应用。在这里,上一级的输出与下一级的输入共用一个阻抗。由于地线就是信号的回流线,因此当两个电路共用一段地线时,彼此也会相互影响。一个电路的地电位会受到另一个电路工作状态的影响,即一个电路的地电位受另一个电路的地电流的调制,另一个电路的信号就耦合进了前一个电路。对于两个共用电源的电路也存在这个问题。解决的办法是对每个电路分别供电,或加

3、解耦电路。b、容性耦合 在干扰源与干扰对称之间存在着分布电容而产生,干扰量是变化的电场,即变化的电压 du/dt。c、感性耦合 在干扰源与干扰对称之间存在着互感而产生,干扰量是变化的磁场,即变化的电流 di/dt。当信号沿传输线传播时,信号路径与返回路径之问将产生电场,围绕在信号路径和返回路径周围也有磁场。如图所示,基板材料为FR4的50微带线横截面上的电力线和磁力线,可见,这些场并不仅仅局限于微带线的正下方,而是会延伸到周围的空间。这些延伸出去的场称为边缘场。边缘场根据电磁场基本理论,变化的电场产生感应电流,变化的磁场产生感应电压。那么,当一个网络(静态网络)的布线进入另一网络(动态网络)的

4、边缘场时,一旦动态网络上的信号电压和电流发生变化,将会引起边缘场的变化,边缘场的变化又将在静态网络上感应出噪声电压或电流,这就是串扰产生的物理根源。这种两个网络之间通过场相互作用被称做耦合,耦合又可以分为容性耦合和感性耦合,而把耦合电容和耦合电感分别称做互容和互感.互容和互感都对串扰有贡献,但要区别对待。当返回路径是很宽的均匀平面时,如PCB上的布线,容性耦合和感性耦合大体相当。因此,要精确预测耦合传输线的串扰,两种因素都必须考虑。如果返回路径不是很宽的均匀平面,比如引线,虽然容性耦合和感性耦合也都存在,但串扰主要来自于互感。这时,如果动态网络上有一个快速变化的电流,如上升、下降沿,将会在静态

5、网络上引起不可忽视的噪声。d. 共阻抗耦合干扰抑制方法 1)让两个电流回路或系统彼此无关。信号相互独立,避免电路的连接,以避免形成电路性耦合。2)限制耦合阻抗,使耦合阻抗愈低愈好,当耦合阻抗趋于零时,称为电路去耦。为使耦合阻抗小,必须使导线电阻和导线电感都尽可能小。3)电路去耦:即各个不同的电流回路之间仅在唯一的一点作电的连接,在这一点就不可能流过电路性干扰电流,于是达到电流回路间电路去耦的目的。4)隔离:电平相差悬殊的相关系统(比如信号传输设备和大功率电气设备之间),常采用隔离技术。e. 容性耦合干扰抑制方法 为了抑制电容性干扰可以采取以下措施:1)干扰源系统的电气参数应使电压变化幅度和变化

6、率尽可能地小;2)被干扰系统应尽可能设计成低阻;3)两个系统的耦合部分的布置应使耦合电容尽量小。例如电线、电缆系统,则应使其间距尽量大,导线短,避免平行走线;4)可对干扰源的干扰对象进行电气屏蔽,屏蔽的目的在于切断干扰源的导体表面和干扰对象的导体表面之间的电力线通路,使耦合电容变得最小;f. 感性耦合干扰抑制方法 1) 干扰源系统的电气参数应使电流变化的幅度和速率尽量小;被干扰系统应该具有高阻抗;2)减少两个系统的互感,为此让导线尽量短,间距尽量大,避免平行走线,采用双线结构时应缩小电流回路所围成的面积;3)对于干扰源或干扰对象设置磁屏蔽,以抑制干扰磁场。4)采用平衡措施,使干扰磁场以及耦合的

7、干扰信号大部分相互抵消。如使被干扰的导线环在干扰场中的放置方式处于切割磁力线最小(环方向与磁力线平行),则耦合的干扰信号最小;另外如将干扰源导线平衡绞合,可将干扰电流产生的磁场相互抵消。4、辐射干扰 a. 近场和远场 干扰通过空间传输实质上是干扰源的电磁能量以场的形式向四周空间传播。场可分为近场和远场。近场又称感应场,远场又称辐射场。判定近场远场的准则是以离场源的距离 r 也定的。r/2 则为远场 r/2 则为近场 我们常用波阻抗来描述电场和磁场的关系,波阻抗定义为Zo=E/H 在远场区电场和磁场方向垂直并且都和传播方向垂直称为平面波,电场和磁场的比值为固定值,为 Zo=120=377 欧。下

8、图为波阻抗与距离的关系。b. 减少辐射干扰的措施 减小辐射干扰的措施主要有:1) 辐射屏蔽:在干扰源和干扰对象之间插入一金属屏蔽物,以阻挡干扰的传播。2) 极化隔离:干扰源与干扰对象在布局上采取极化隔离措施。即一个为垂直极化时,另一个为水平极化,以减小其间的耦合。3) 距离隔离:拉开干扰源与被干扰对象之间的距离,这是由于志在近场区,场量强度与距离平方或立方成比例,当距离增大时,场衰减很快。4) 吸收涂层法:被干扰对象有时可涂复一层吸收电磁波的材料,以减小干扰。第二部分 电磁干扰的模式 1 共模干扰与差模干扰 共模干扰(Common-mode):两导线上的干扰电流振幅相等,而方向相同者称为共模干

9、扰。差模干扰(Differential-mode):两导线上的干扰电流,振幅相等,方向相反称为差模干扰。共模(Common mode)是指存在于两根或多根导线中,流经所有导线的电流都是同极性的,差模(Differential mode)是指在导线对上的电流极性是相反的。共模干扰的干扰电流在电缆中的所有导线上幅度相位相同,它在电缆与大地之间形成回路流动,见图(a)。差模干扰的干扰电流在信号线与信号地线之间流动,见图(b)。由于共模干扰与差模干扰的干扰电流在电缆上的流动方式不同,对这两种干扰电流的滤波方法也不相同。因此在进行滤波设计之前必须了解所面对的干扰电流的类型。2 PCB的辐射与线缆的辐射

10、1、PCB辐射PCB 上有许多信号环路,由中有差模电流环也有共模电流环,计算其辐射强度时,可等效为环天线,辐射强度由下式计算:2、线缆的辐射 计算线缆的辐射强度时,将其等效为单极天线,其辐射强度由下式计算:以上两式可以看出线缆的辐射效率远大于 PCB 的辐射效率。第三部分 电磁屏蔽理论 1、 屏蔽效能的感念 屏蔽是利用屏蔽体来阻挡或减小电磁能传输的一种技术,是抑制电磁干扰的重要手段之一。屏蔽有两个目的,一是限值内部辐射的电磁能量泄漏出该内部区域,二是防止外来的辐射干扰进入某一区域。电磁场通过金属材料隔离时,电磁场的强度将明显降低,这种现象就是金属材料的屏蔽作用。我们可以用同一位置无屏蔽体时电磁

11、场的强度与加屏蔽体之后电磁场的强度之比来表征金属材料的屏蔽作用,定义屏蔽效能(ShieldingEffectiveness,简称 SE):2、屏蔽体上孔缝的影响 实际上,屏蔽体上面不可避免地存在各种缝隙、开孔以及进出电缆等各种缺陷,这些缺陷将对屏蔽体的屏蔽效能有急剧的劣化作用。上节中分析的理想屏蔽体在 30MHz 以上的屏蔽效能已经足够高,远远超过工程实际的需要。真正决定实际屏蔽体的屏蔽效能的因素是各种电气不连续缺陷,包括:缝隙、开孔、电缆穿透等。屏蔽体上面的缝隙十分常见,特别是目前机柜、插箱均是采用拼装方式,其缝隙十分多,如果处理不妥,缝隙将急剧劣化屏蔽体的屏蔽效能。1、孔缝屏蔽的总体设计思

12、想根据小孔耦合理论,决定孔缝泄漏量的因素主要有两个:孔缝面积和孔缝最大线度尺寸。两者皆大,则泄漏最为严重;面积小而最大线度尺寸大则电磁泄漏仍然较大。如图所示为一典型机柜示意图,上面的孔缝主要分为四类:(1)机箱(机柜)接缝该类缝虽然面积不大,但其最大线度尺寸即缝长却非常大,由于维修、开启等限制,致使该类缝成为电子设备中屏蔽难度最大的一类孔缝,采用导电衬垫等特殊屏蔽材料可以有效地抑制电磁泄漏。该类孔缝屏蔽设计的关键在于:合理地选择导电衬垫材料并进行适当的变形控制。(2)通风孔该类孔面积和最大线度尺寸较大,通风孔设计的关键在于通风部件的选择与装配结构的设计。在满足通风性能的条件下,应尽可能选用屏效

13、较高的屏蔽通风部件。(3)观察孔与显示孔该类型孔面积和最大线度尺寸较大,其设计的关键在于屏蔽透光材料的选择与装配结构的设计。(4)连接器与机箱接缝这类缝的面积与最大线度尺寸均不大,但由于在高频时导致连接器与机箱的接触阻抗急剧增大,从而使得屏蔽电缆的共模传导发射变大,往往导致整个设备的辐射发射出现超标,为此应采用导电橡胶等连接器导电衬垫。由于辐射源分为近区的电场源、磁场源和远区的平面波,因此屏蔽体的屏蔽性能依据辐射源的不同,在材料选择、结构形状和对孔缝泄漏控制等方面都有所不同。在设计中要达到所需的屏蔽性能,则需首先确定辐射源,明确频率范围,再根据各个频段的典型泄漏结构,确定控制要素,进而选择恰当

14、的屏蔽材料,设计屏蔽壳体。综上所述,孔缝抑制的设计要点归纳为:(1)合理选择屏蔽材料;(2)合理设计安装互连结构。2、孔洞泄露的评估机箱上不可避免地会有各种孔洞,这些孔洞最终决定了屏蔽体的屏蔽效能(假设没有电缆穿过机箱)。一般可以认为,屏蔽机箱在低频时的屏蔽效能主要取决于制造屏蔽体的材料,在高频时的屏蔽效能主要取决于机箱上的孔洞和缝隙。当电磁波入射到一个孔洞时,孔洞的作用是相当于一个偶极天线。当缝隙的长度达到1/2时,其辐射效率最高(与缝隙的宽度无关)。也就是说,它可以入射到缝隙的全部能量辐射出去,如图所示。图 孔缝的电磁泄漏在远场区,如果孔洞的最大尺寸L小于/2,一个厚度为0的材料上的缝隙的

15、屏蔽效能为:如果L大于/2,则SE=0(dB)。式中SE屏蔽效能(dB);L孔洞的长度(mm);H孔洞的宽度(mm);f入射电磁波的频率(MHz)。这个公式计算的是最坏情况下(造成最大泄露的极化方向)的屏蔽效能,实际情况下屏蔽效能可能会更高一些。在近场区,孔洞的泄露还与辐射源是磁场源有关。当辐射源是电场源时,孔洞的泄露比远场小(屏蔽效能高);而当辐射源是磁场源时,孔洞的泄露比远场大(屏蔽效能低)。对于不同电路阻抗Zc的辐射源,计算公式如下:若ZC(7.9/Df):(电场源)若ZC(7.9/Df):(电场源)式中SE屏蔽效能(dB);L孔洞的长度(mm);H孔洞的宽度(mm);f入射电磁波的频率(MHz)。这个公式计算的是最坏情况下(造成最大泄漏的极化方向)的屏蔽效能,实际情况下屏蔽效能可能会更

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 其它相关文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号