盾构施工与管理规范

上传人:lcm****801 文档编号:88966624 上传时间:2019-05-14 格式:DOC 页数:24 大小:758.57KB
返回 下载 相关 举报
盾构施工与管理规范_第1页
第1页 / 共24页
盾构施工与管理规范_第2页
第2页 / 共24页
盾构施工与管理规范_第3页
第3页 / 共24页
盾构施工与管理规范_第4页
第4页 / 共24页
盾构施工与管理规范_第5页
第5页 / 共24页
点击查看更多>>
资源描述

《盾构施工与管理规范》由会员分享,可在线阅读,更多相关《盾构施工与管理规范(24页珍藏版)》请在金锄头文库上搜索。

1、第一部分:盾构规范施工要求及规定一、施工场地施工现场的场地应满足工作井、龙门吊、管片存放、浆液站、泥浆处理设施、材料、渣土堆放、充电间、供配电站、控制室、库房等生产设施用地和施工运输要求。二、前期调查对工程地质和水文地质调查,必要时补勘;对影响范围(2倍深度)内的建(构)筑物调查,必要时应鉴定;对地下障碍物、构筑物及管线等进行调查,必要时进行探查;对当地的环保要求与政策进行调查。具体主要内容如下:1、实地踏勘调查各种建(构)筑物的使用功能、结构形式、基础类型及其与隧道的相对位置等;2、道路种类和路面交通情况;3、工程用地情况,主要对施工场地及材料堆放场地、弃土场地、运输路线等做必要的调查;4、

2、施工用电和给水排水设施条件;5、有关环境保护的法律法规。三、盾构选型与配置:刀盘、推进液压缸、管片拼装机、螺旋输送机、泥水循环系统、铰接装置、渣土改良系统和注浆系统等。四、盾构选型依据:1、工程地质和水文地质勘察报告:地层岩性及分布状况、地层软硬程度、地下水位、地层渗透性等,同时要特别注意大粒径卵砾石地层、漂石、高灵敏度软土、松散沙层、软硬混合地层、地中障碍物、可燃及有害气体等;2、隧道线路及结构设计文件:线路平纵断面(最小曲线半径、最大坡度)、建筑限界、隧道埋深、连续掘进长度、衬砌结构形式及分度参数等;3、施工安全;4、施工环境及其保护要求:工程周边的建(构)筑物状况、地下管线情况、道路交通

3、状况、控制沉降要求。盾构施工过程中应注重对环境的保护,防止施工过程中产生的废弃物、噪声等对环境产生污染。对泥水平衡盾构而言,泥浆处理不彻底,泥浆中的悬浮或半悬浮状态的细土颗粒不能完全分离出来,弃浆量大,会对周围环境造成影响;5、工期条件;6、辅助施工方法;7、类似工程施工经验。盾构施工段工程地质的复杂性主要反映在基础地质(主要是围岩岩性)和工程地质特性的多变方面。盾构选型时应综合考虑,并对不同选择进行风险分析后择其优者。从保持工作面的稳定、控制地面沉降的角度来看,使用泥水平衡盾构要比使用土压平衡盾构的效果好一些,特别是在江河湖等水域、存在密集的建(构)筑物,以及上软下硬的地层中施工时。采用泥水

4、平衡盾构还可以降低地质变化差异大造成的施工风险。在特殊施工环境中,施工安全是盾构选型时的一项极其重要的因素。盾构选型的主要方法包括地层渗透系数法、地层颗粒级配法等。地层渗透系数法:当地层的渗透系数小于10-7ms时,可选用土压平衡盾构;当地层的渗透系数为1010-7ms1010-4ms时,既可以选用土压平衡盾构也可以选用泥水平衡盾构;当地层渗透系数大于1010-4ms时,宜选用泥水平衡盾构。对于渗水系数较大的地层,如果采用土压平衡式盾构施工,螺旋输送机“土塞效应”难以形成,螺旋输送机出渣会发生大量“喷涌”现象,这样对施工非常不利;同时土仓压力波动大,地面沉降很难控制。对于渗透系数较小的隧道,如

5、果采用泥水平衡式盾构施工,主要制约因素是隧道渣土排放需要较长的管道,及需要昂贵的泥水处理设备,在环境要求高的场合还应采用渣土压滤设备,同时耗费大量的膨润土,工程造价较高。地层颗粒级配法:土压平衡盾构主要适用于粉土、粉质黏土、淤泥质粉土、粉砂层等地层的施工;砾石粗砂地层宜选用泥水平衡盾构施工;粗砂、细砂地层既可选用泥水平衡盾构,也可在土质改良后选用土压平衡盾构;含漂石、砂卵石地层宜选用土压平衡盾构。当岩土中的粉粒和黏粒的总量达到40以上时,通常会选用土压平衡盾构,相反的情况则选择泥水平衡盾构比较合适。五、刀盘应符合下列规定1、盘结构的强度和刚度应满足工程要求;2、刀盘结构形式应适应地质条件,刀盘

6、面板应采取耐磨措施,刀盘开口率应能满足盾构掘进和出渣要求;3、刀具的选型和配置应根据地质条件、开挖直径、切削速度、掘进里程、最小曲线半径及地下障碍物情况等确定;4、刀盘添加剂喷口的数量及位置应根据地质条件、刀盘结构、刀盘开挖直径等确定。刀具配置方式刀具的布置方式需要充分考虑工程地质情况,进行针对性设计,不同的工程地质特点,采用不同的刀具配置方案,以获得良好的切削效果和掘进速度。根据地质条件特点,可以大致分为四种地层:软弱土地层;砂层、砂卵石地层;风化岩及软硬不均地层;单纯的纯硬岩地层。切刀和刮刀等切削类刀具一般适用于砂、卵石、黏土等松散地层。岩石强度较大时应配置滚刀。1、软弱土地层:如南京、上

7、海、杭州等地,其地质条件主要以淤泥、粘土和粉质粘土为主,在软弱土地层一般只需配置切削型刀具,如:切刀、周边刮刀、中心刀、先行刀和超挖刀。以南京地铁盾构为例,刀盘采用面板式结构,装有1把鱼尾形中心刀,120把切刀,16把周边刮刀及1把仿形刀。切刀安装在开口槽的两侧,覆盖了整个进碴口的长度。刮刀安装在刀盘边缘。由于刀盘需要正反旋转,因此切刀的布置也在正反方向布置,为了提高切刀的可靠性,在每个轨迹上至少布置2把。在周边工作量相对较大,磨损后对盾构切口环尺寸影响较大,在正反方向各布置了8把刮刀。考虑到刀盘的受力均匀性,刀具布置具有对称性。刀具安装采用螺栓固定,便于更换。在切刀或刮刀的刃口和刃口背面镶嵌

8、有合金和耐磨材料,以延长刀具的使用寿命,切刀的破岩能力为20MPa,可以顺利地通过进出洞端头的加固地层。2、砂层、砂卵石地层:如北京、成都其地质条件主要以砂,卵石地层为主,如遇到粒径较大的砾石或漂石,应配置滚刀进行破碎。在砂层、砂卵石地层施工时,需设置(宽幅)切刀、周边刮刀、先行刀(重型撕裂刀)、中心刀、仿形刀等刀具。切刀是主刀具,用于开挖面大部分断面的开挖;周边刮刀也称保径刀,用于切削外周的土体,保证开挖断面的直径;先行刀在开挖面沿径向分层切削,预先疏松土体,降低切刀的冲击荷载,减少切削力矩,同时重型撕裂刀用于破碎强度较低和粒径较小的卵石和砾石;中心刀用于开挖面中心断面的开挖,起到定心和疏松

9、部分土体的作用;仿形刀用于曲线开挖和纠偏。滚刀用于破碎粒径较大的砾石或漂石。3、风化岩及软硬不均地层:如广州、深圳,上软下硬、地质不均的复合地层,且局部岩石的单轴抗压强度较高(150-200Mpa),除配置切削型刀具外包括宽幅切刀、先行刀,还需配置滚刀,因而刀盘结构相对复杂。对于岩层首先通过滚刀进行破岩,且滚刀的超前量应大于切刀的超前量,在滚刀磨损后仍能避免切刀进行破岩,确保切刀的使用寿命。在曲线半径小的隧道掘进时,为了保证盾构的调向和避免盾壳被卡死,需要有较大的开挖直径,因此刀盘上需配置滚刀型的仿形刀(或超挖刀,超挖量50mm左右)。4、单纯的纯硬岩地层:如秦岭1线隧道,隧道断面范围内以混合

10、片麻岩和混合花岗岩两种岩石为主,刀具全部选用滚刀,无任何齿刀。有时,在刀盘面板周边开口处配备刮碴刮刀板。 在复合地层施工中,刀具配置的差异性主要表现在滚刀和先行刀的配置数量和刀具的高度、组合高度差等方面。海瑞克公司刀盘滚刀和固定先行刀高出面板175mm和140mm,而日系盾构刀盘滚刀和固定先行刀高出面板90mm和70mm。两种刀具的高差为35mm和20mm,前者的设计较好,具体表现为刀具高对防止泥饼的形成有利,高度差大有利于破岩。滚刀的刀间距过大和过小都不利于破岩,间距过大,滚刀间会出现“岩脊”现象,间距过小,滚刀间会出现小碎块现象,降低破岩功效。在复合地层中周边滚刀的间距一般小于90mm,正

11、面滚刀的间距为100120mm(参照国内外施工实例,岩石强度高时,滚刀的间距应控制在7090mm的范围内比较合理),滚刀总刃数在40左右(一般选择单刃滚刀)。面板式与幅条式的特点砂土、粉土和黏性土地层宜采用辐条式结构或开口率较大的面板式结构,复合地层宜采用面板式结构。泥水平衡盾构一般采用面板式刀盘,土压平衡盾构根据工程地质可选用面板式或辐条式刀盘。采用面板式刀盘时,由于渣土经刀盘面板的开口进入开挖仓,开挖仓内的土压力与开挖面的土压力之间产生压力降,其大小受面板开口的影响不易确定,从而使得开挖面的土压力不易控制。由于受面板开口率的影响,渣土进入开挖仓不顺畅、易粘结和易堵塞。面板式刀盘的优点是通过

12、刀盘的开口可以限制进入开挖仓的卵石粒径,在风化岩及软硬不均地层或上软下硬地层掘进时,应采用面板式刀盘。辐条式刀盘渣土流动顺畅,不易粘结和堵塞。由于没有面板的阻挡,渣土从开挖面进入开挖仓时没有土压力的衰减,开挖面土压等于测量土压,因而能对土压进行有效的管理,能有效地控制地面沉降。因此,辐条式刀盘对单一软土地层的适应性比面板式刀盘好。面板式:优点是开口率较小,软土口开口率一般在45%左右,复合地层开口率在30%左右,面板开口小,强度高,易于刀具布置,对正面土体支撑效果较好,土压波动小;缺点是传感器对正面土体的压力反映不够准确,渣土进入土仓相对困难。幅条式:优点是开口率大,渣土易进入土仓,不易形成泥

13、饼,刀盘不易被堵,正面土压能较准确的反映;缺点是正面土压波动较大,容易引起地表沉降,刀盘比较薄弱,不易满足复合地层刀具的布置和刀盘本身刚度的要求。目前复合式盾构开口率基本趋于一致,在30%左右,重点保证刀盘中心开口率,刀盘总重量在56吨左右;软土盾构刀盘在20吨左右。刀盘驱动六、测量包括地面控制测量、联系测量、隧道内控制测量、掘进施工测量、贯通测量和竣工测量。地面控制测量平面控制网(导线)测量技术要求高程控制网(水准)测量技术要求联系测量包括地面近井导线测量和近井高程测量、工作井定向测量和导入高程测量,以及隧道内近井导线测量和近井高程测量等。盾构隧道贯通前的联系测量次数不应少于3次,宜在隧道掘

14、进至100m、13贯通长度和距贯通面150m前分别进行一次。当贯通长度超过1500m时,应增加联系测量次数或采用高精度联系测量方法,提高联系测量精度。隧道内控制测量包括隧道内施工导线测量、施工控制导线测量和隧道内施工水准测量、施工控制水准测量。控制网宜为支导线和支水准路线,当有联络通道时,应形成附合路线或结点网。直线隧道的导线平均边长宜为150m,曲线隧道的导线平均边长宜为60m,相邻的长短边边长比不应大于3。水准点宜按每200m间距设置1个。在隧道贯通前,隧道内控制导线和控制水准测量不应少于3次。重合点坐标较差应小于30mmldLd,高程较差应小于10mm,且应采用平均值作为测量结果。掘进施

15、工测量采用极坐标法放样隧道中心线和盾构基座的位置、方向,应利用水准测量方法测设隧道高程控制线以及基座坡度,坐标和高程放样中误差为5mm;反力架和洞门圈位置应采用三维放样方法放样,反力架安装后和洞门浇筑前应对其经过设计中心的竖直和水平位置进行复测,并应提供相应里程的坐标或与中心的距离,放样和复测中误差应为10mm。盾构就位后应采用人工测量方法测定盾构的初始姿态,人工测量与盾构导向系统测量较差不应大于2m(m为点位测量中误差)。盾构测量标志点应牢固设置在盾构上,且不应少于3个,标志点可粘贴反射片或安置棱镜;盾构姿态测量:横向偏差、竖向偏差、俯仰角、方位角、滚转角和切口里程。管片拼装后,应进行盾尾间隙测量。壁后注浆完成后,宜进行衬砌环测量,包括衬砌环中心坐标、底部高程、水平直径、竖直直径和前端面里程,测量中误差为3mm。贯通测量隧道贯通后应进行贯通测量,测量内容包括隧道的纵横向和高程贯通误差。竣工测量包括隧道轴线平面偏差、高程偏差、衬砌环椭圆度和隧道纵横断面测量等。地铁、铁路隧道应在直线段每10环、曲线段每5环测量1个横断面,横断面上的测点位置、数量应按设计要求确定;横断面测量中误差应为10mm。七、盾构组装与调试组装前的准备工作:1、根据盾构部件情况和场地条件,制定组装方案;2、根据部件尺寸和重量选择组装设备;3、核实起吊位置的地基承载力。组装后,先进行各系统的空载调试,然后进行整机

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号