-非线性电路混沌现象的探究以及基于multisim的仿真设计

上传人:小** 文档编号:88853354 上传时间:2019-05-11 格式:DOC 页数:15 大小:5.02MB
返回 下载 相关 举报
-非线性电路混沌现象的探究以及基于multisim的仿真设计_第1页
第1页 / 共15页
-非线性电路混沌现象的探究以及基于multisim的仿真设计_第2页
第2页 / 共15页
-非线性电路混沌现象的探究以及基于multisim的仿真设计_第3页
第3页 / 共15页
-非线性电路混沌现象的探究以及基于multisim的仿真设计_第4页
第4页 / 共15页
-非线性电路混沌现象的探究以及基于multisim的仿真设计_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《-非线性电路混沌现象的探究以及基于multisim的仿真设计》由会员分享,可在线阅读,更多相关《-非线性电路混沌现象的探究以及基于multisim的仿真设计(15页珍藏版)》请在金锄头文库上搜索。

1、非线性电路混沌现象的探究以及基于 Multisim的仿真设计摘要本文从非线性电路中的混沌现象着手,详细回顾了混沌电路的实验原理、实验方法以及实验现象,并通过一元线性回归对有源非负阻的伏安特性曲线实进行了拟合。此外,本文也着重通过 MultiSim软件,对实验中的混沌电路进行了仿真,仔细记录了仿真下来的各个波形。同时,也利用该软件,通过搭建电路,用示波器获得了有源非线性负阻的伏安特曲。关键词混沌电路 有源非线性负阻 MultiSim软件一、引言混沌是二十世纪最重要的科学发现之一,被誉为继相对论和量子力学之后的第三次物理革命,它打破了确定性与随机性之间不可逾越的分界线,将经典力学研究推进到一个崭新

2、的时代。由于混沌信号是一种貌似随机而实际却是由确定信号系统产生的信号,使得混沌在许多领域(如保密通信,自动控制,传感技术等)得到了广泛的应用1。20多年来混沌一直是举世瞩目的前沿课题和研究热点,它揭示了自然界及人类社会中普遍存在的复杂性、有序性和无序的统一,大大拓宽了人们的视野,加深了人们对客观世界的认识。目前混沌控制与同步的研究成果已被用来解决秘密通信、改善和提高激光器性能以及控制人类心律不齐等问题。混沌(chaos)作为一个科学概念,是指一个确定性系统中出现的类似随机的过程。理论和实践都证明,即使是最简单的非线性系统也能产生十分复杂的行为特性,可以概括一大类非线性系统的演化特征。混沌现象出

3、现在非线性电路中是极为普遍的现象,通过改变电路中的参数可以观察到倍周期分岔、阵法混乱和奇异吸引子等现象。二、混沌电路简介对电路系统来说,在有些二阶非线性非自治电路或三阶非线性自治电路中,出现电路的解既不是周期性的也不是拟周期的,但在状态平面上其相轨迹始终不会重复,但是有界的,而且电路对初始条件十分敏感,这便是非线性电路中的混沌现象。根据Li-York定义,一个混沌系统应具有三种性质:(1)存在所有阶的周期轨道;(2)存在一个不可数集合,此集合只含有混沌轨道,且任意两个轨道既不趋向远离也不趋向接近,而是两种状态交替出现,同时任一轨道不趋于任一周期轨道,即此集合不存在渐近周期轨道;(3)混沌轨道具

4、有高度的不稳定性。可见,周期轨道与混沌运动有密切关系,表现在两个方面:第一,在参数空间中考察定常的运动状态,系统往往要在参量变化过程中先经历一系列周期制度,然后进入混沌状态;第二,一个混沌吸引子里面包含着无穷多条不稳定的周期轨道,一条混沌轨道中有许许多多或长或短的片段,它们十分靠近这条或那条不稳定的周期轨道。根据文献23,混沌主要特征表现在:(1)敏感依赖于初始条件;(2)伸长与折叠;(3)具有丰富的层次和自相似结构;(4)在非线性耗散系统中存在混沌吸引子。同时,混沌运动还具有如下特征:(1)存在可数无穷多个稳定的周期轨道;(2)存在不可数无穷多个稳定的非周期轨道;(3)至少存在一个不稳定的非

5、周期轨道。非线性电路是指电路中至少包含一个非线性元件的电路。事实上一切实际元件都是非线性的。因为给任何元件上加足够大的电压或电流后都将破坏其线性。实质上,确定系统受确定性激励,影响也可能是不确定的,这是由于运动对初始值的敏感性造成的。三、实验原理3.1蔡氏电路及其动力学方程本实验采用的电路图如图1所示,即蔡氏电路。蔡氏电路是由美国贝克莱大学的蔡少棠教授设计的能产生混沌行为的最简单的一种自制电路。R是非线性电阻元件,这是该电路中唯一的非线性元件,是一个有源负阻元件。电容C2与电感L组成一个损耗很小的振荡回路。可变电阻1/G和电容C1构成移相电路。最简单的非线性元件R可以看作由三个分段线性的元件组

6、成。由于加在此元件上的电压增加时,故称为非线性负阻元件。图1 蔡氏电路式中,G代表可变电组的导纳,VC1、VC2分别表示加在电容上C1、C2上的电压,iL表示流过L的电流u,g=1/R表示非线性电阻R的导纳。实验时将G取最小,用示波器观察VC1和VC2的李萨如图形,并可用双踪观察两电压详细曲线4。3.2通向混沌道路方式简述震荡系统一旦发生倍周期分岔必将导致混沌。混沌是一种运动状态,从确定性系统通往混沌主要有倍周期分岔、阵发性、准周期等道路。对于一位映射: 当参数增加时出现周期分岔的过程,即周期1分岔出周期2,周期2又分岔出周期4若周期倍分岔相邻3个分岔点的参数分别为:n-1,n,n+1则当n时

7、,比值:这是一个无理常数,称为费根鲍姆常数。3.3有源非线性负阻元件有源非线性负阻元件实现的方法有多种,这里使用一种较为简单的电路,采用两个运算放大器(1个双运放TL082)和六个配置电阻来实现,其电路如图2,它主要是一个正反馈电路,能输出电流以维持振荡器不断震荡,而非线性负阻元件能使振荡周期产生分岔和混沌等一系列非线性现象。四、实验仪器NCE1非线性电路混沌实验仪本实验装置的核心是NCE-1非线性电路混沌实验仪,它是由非线性电路混沌实验电路板、-150+15V稳压电源和四位半数字电压表(020V,分辨率1mV)组成,装在一个仪器箱内。非线性电路除电感外,全部焊接在一块电路板上。实验还另配有电

8、感测量盒(其内部及外部连线如图3)、双踪示波器、信号发生器和电阻箱各一个,电缆6根,三通1个。混沌振荡电路板如上图,双运放TL082的前级和后级正负反馈同时存在,正反馈的强弱与比值R3/RV,R6/RV有关,负反馈的强弱与比值R2/R1,R5/R4有关。当正反馈大于负反馈时,振荡电路才能振荡。若调节RV,正反馈就发生变化,因为运放TL082处于振荡状态,所以是一种非线性应用,混沌振荡电路实际上是一个可调的特殊振荡器。途中电感L约为20mH。五、实验现象5.1倍周期分叉和混沌现象的观察打开机箱,按图1连接好实验装置后,用示波器测量李萨如图形。讲RV=1/G调节到某一较大值,这时出现一个斜椭圆,它

9、表明系统开始自激振荡。继续增加电导(减小可变电阻值1/G),此时将有1倍周期变化为2倍周期,即系统需要两个周期才恢复原状。这在非线性理论中称为倍周期分岔。它揭开了动力学系统步入混沌的“序幕”。继续减小1/G的值,依次初现4倍周期和阵发混沌。再减小1/G,出现3倍周期。随着1/G值得进一步减小,系统将完全进入混沌区。其运动轨线不再是周期性的,从屏幕上观察轨道的演化时,可以看到的轨道线在的绕行规律是随机的。但是这种随机性与真正随机系统中不可预测的无规性又不相同。因为相点貌似无规振荡,不会重复以走过的路,但并不以连续概分布在相平面上随机行走。类似“线圈”的轨道本身是有界的,其极限集合呈现出奇特而美丽

10、的性状,显然有某种规律。我们仍把这时的解集和前面看到的周期成为一种吸引子。此类吸引子与其他周期解得吸引子不同,通常称之为奇异吸引子或混沌吸引子5。在实验中,我们观察到的图像记录如下:一倍周期: 两倍周期: 三倍周期: 四倍周期: 阵发混乱: 单吸引子: 双吸引子:5.2非线性电阻测量在实验中,将电路的LC振荡部分与非线性电阻直接断开,因为负阻部分是含源的,所以可用一个电阻箱作电阻,只要直接测出加在非线性负阻的电压,并记录相应R值,通过公式:可以计算出伏安特性曲线,实验时测量数据如表下表:V(v)R()V(v)R()V(v)R()-12.076000.0-8.02061.8-4.01798.5-

11、11.82152.0-7.82053.2-3.81774.6-11.612330.0-7.62044.4-3.61749.0-11.48530.0-7.42035.1-3.41721.5-11.26450.0-7.22025.4-3.21691.5-11.05145.0-7.02015.2-3.01623.8-10.84248.0-6.82009.6-2.81585.4-10.63591.0-6.61993.4-2.61542.8-10.43091.0-6.41981.6-2.41495.8-10.22699.0-6.21969.3-2.21443.6-10.02384.0-6.01956.2

12、-2.01385.5-9.82130.0-5.81942.5-1.81320.0-9.62118.9-5.61928.1-1.61306.4-9.42112.7-5.41912.7-1.41304.9-9.22106.2-5.21896.6-1.21302.8-9.02099.5-5.01879.3-1.01300.1-8.82092.6-4.81861.1-0.81295.9-8.62085.3-4.61841.5-0.61288.9-8.42077.8-4.41820.8-0.41275.2-8.22069.9-4.21798.5-0.21235.6六、 基于MultiSim的蔡氏电路仿真

13、6.1 MultiSim软件介绍Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。这款软件具有如下特点: 直观的图形界面:整个操作界面就像一个电子实验工作台,绘制电路所需的元器件和仿真所需的测试仪器均可直接拖放到屏幕上,轻点鼠标可用导线将它们连接起来,软件仪器的控制面板和操作方式都与实物相似,测量数据、波形和特性曲线如同在真实仪器上看到的; 丰富的元器件:提供了世界主流元件提供商的超过17000多种元件,同时能方便的对元件各种参数进行编辑修

14、改,能利用模型生成器以及代码模式创建模型等功能,创建自己的元器件。 强大的仿真能力:以SPICE3F5和Xspice的内核作为仿真的引擎,通过Electronic workbench 带有的增强设计功能将数字和混合模式的仿真性能进行优化。包括SPICE仿真、RF仿真、MCU仿真、VHDL仿真、电路向导等功能。 完备的分析手段:Multisimt提供了许多分析功能:它们利用仿真产生的数据执行分析,分析范围很广,从基本的到极端的到不常见的都有,并可以将一个分析作为另一个分析的一部分的自动执行。集成LabVIEW和Signalexpress快速进行原型开发和测试设计,具有符合行业标准的交互式测量和分析功能;这是软件的界面图:对于蔡氏电路的仿真,在实验中,我们也已经尝试使用MatLab进行编程,除此之外,还有数种软件可以使我们进行仿真。以下是一个列表,来比较其他软件的仿真与MultiSim的区别。软件名称功能原理图电路原理图波形图相图频谱图管理界面MultiSim好

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业/管理/HR > 管理学资料

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号