必备蛋白质的结构分析流程教程

上传人:豆浆 文档编号:874611 上传时间:2017-05-20 格式:DOC 页数:24 大小:87KB
返回 下载 相关 举报
必备蛋白质的结构分析流程教程_第1页
第1页 / 共24页
必备蛋白质的结构分析流程教程_第2页
第2页 / 共24页
必备蛋白质的结构分析流程教程_第3页
第3页 / 共24页
必备蛋白质的结构分析流程教程_第4页
第4页 / 共24页
必备蛋白质的结构分析流程教程_第5页
第5页 / 共24页
点击查看更多>>
资源描述

《必备蛋白质的结构分析流程教程》由会员分享,可在线阅读,更多相关《必备蛋白质的结构分析流程教程(24页珍藏版)》请在金锄头文库上搜索。

1、http:/ (站内联系 TA)实验数据许多实验数据可以辅助结构预测过程,包括: 二硫键,固定了半胱氨酸的空间位置光谱数据,可以提供蛋白的二级结构内容定位突变研究,可以发现活性或结合位点的残基 蛋白酶切割位点,翻译后修饰如磷酸化或糖基化提示了残基必须是暴露的 其他预测时,必须清楚所有的数据。必须时刻考虑:预测与实验结果是否一致?如果不是,就有必要修改做法。cnlics (站内联系 TA)蛋白序列数据对蛋白序列的初步分析有一定价值。例如,如果蛋白是直接来自基因预测,就可能包含多个结构域。更严重的是,可能会包含不太可能是球形或可溶性的区域。此流程图假设你的蛋白是可溶的,可能是一个结构域并不包含非球

2、形结构域。 需要考虑以下方面:是跨膜蛋白或者包含跨膜片段吗?有许多方法预测这些片段,包括:o TMAP (EMBL) o PredictProtein (EMBL/Columbia) o TMHMM (CBS, Denmark) o TMpred (Baylor College) o DAS (Stockholm) 如果包含卷曲(coiled-coils) 可以在 COILS server 预测 coiled coils 或者下载 COILS 程序(最近已经重写,注意 GCG 程序包里包含了 COILS 的一个版本) 蛋白包含低复杂性区域?蛋白经常含有数个聚谷氨酸或聚丝氨酸区,这些地方不容易预

3、测。可以用 SEG(GCG 程序包里包含了一个版本的 SEG 程序)检查 。如果出现以上一种情况,就应该将序列打成碎片,或忽略序列中的特定区段,等等。这个问题与细胞定位结构域相关。cnlics (站内联系 TA)搜索序列数据库分析任何新序列的第一步显然是搜索序列数据库以发现同源序列。这样的搜索可以在任何地方或者在任何计算机上完成。而且,有许多 WEB 服务器可以进行此类搜索,可以输入或粘贴序列到服务器上并交互式地接收结果。序列搜索也有许多方法,目前最有名的是 BLAST 程序。可以容易得到在本地运行的版本(从 NCBI 或者 Washington University),也有许多的 WEB 页

4、面允许对多基因或蛋白质序列的数据库比较蛋白质或 DNA 序列,仅举几个例子:National Center for Biotechnology Information (USA) Searches European Bioinformatics Institute (UK) Searches BLAST search through SBASE (domain database; ICGEB, Trieste) 还有更多的站点 最近序列比较的重要进展是发展了 gapped BLAST 和 PSI-BLAST (position specific interated BLAST),二者均使 BL

5、AST 更敏感,后者通过选取一条搜索结果,建立模式( profile),然后用再它搜索数据库寻找其他同源序列(这个过程可以一直重复到发现不了新的序列为止),可以探测进化距离非常远的同源序列。很重要的一点是,在利用下面章节方法之前,通过 PSI-BLAST 把蛋白质序列和数据库比较,找寻是否有已知结构。 将一条序列和数据库比较的其他方法有:FASTA 软件包 (William Pearson, University of Virginia, USA) SCANPS (Geoff Barton, European Bioinformatics Institute, UK) BLITZ (Compu

6、gens fast Smith Waterman search) 其他方法. It is also possible to use multiple sequence information to perform more sensitive searches. Essentially this involves building a profile from some kind of multiple sequence alignment. A profile essentially gives a score for each type of amino acid at each posi

7、tion in the sequence, and generally makes searches more sentive. Tools for doing this include: PSI-BLAST (NCBI, Washington) ProfileScan Server (ISREC, Geneva) HMMER 隐马氏模型( Sean Eddy, Washington University) Wise package (Ewan Birney, Sanger Centre;用于蛋白质对 DNA 的比较)其他方法. A different approach for incorpo

8、rating multiple sequence information into a database search is to use a MOTIF. Instead of giving every amino acid some kind of score at every position in an alignment, a motif ignores all but the most invariant positions in an alignment, and just describes the key residues that are conserved and def

9、ine the family. Sometimes this is called a signature. For example, H-x-x-G-x(5)-H-x(3)- describes a family of DNA binding proteins. It can be translated as histidine, followed by either a phenylalanine or tryptophan, followed by an amino acid (x), followed by leucine, isoleucine, valine or methionin

10、e, followed by any amino acid (x), followed by glycine,. . PROSITE (ExPASy Geneva) contains a huge number of such patterns, and several sites allow you to search these data: ExPASy EBI It is best to search a few different databases in order to find as many homologues as possible. A very important th

11、ing to do, and one which is sometimes overlooked, is to compare any new sequence to a database of sequences for which 3D structure information is available. Whether or not your sequence is homologous to a protein of known 3D structure is not obvious in the output from many searches of large sequence

12、 databases. Moreover, if the homology is weak, the similarity may not be apparent at all during the search through a larger database. One last thing to remember is that one can save a lot of time by making use of pre-prepared protein alignments. Many of these alignments are hand edited by experts on

13、 the particular protein families, and thus represent probably the best alignment one can get given the data they contain (i.e. they are not always as up to date as the most recent sequence databases). These databases include: SMART (Oxford/EMBL) PFAM (Sanger Centre/Wash-U/Karolinska Intitutet) COGS

14、(NCBI) PRINTS (UCL/Manchester) BLOCKS (Fred Hutchinson Cancer Research Centre, Seatle) SBASE (ICGEB, Trieste) 通常把蛋白质序列和数据比较都有很多的方法,这些对于识别结构域非常有用。cnlics (站内联系 TA)确定结构域If you have a sequence of more than about 500 amino acids, you can be nearly certain that it will be divided into discrete functional

15、domains. If possible, it is preferable to split such large proteins up and consider each domain separately. You can predict the locatation of domains in a few different ways. The methods below are given (approximately) from most to least confident. If homology to other sequences occurs only over a portion of the probe sequence and the other sequences are whole (i.e. not partial sequences), then this provides the strongest evidence for domain structure. You can either do database searches yourself or make use of well-curated, pre-defined databases of protein domains. Search

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 行业资料 > 其它行业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号