黑龙江省虎林市高级中学高二化学 22《分子的立体构型》课件 新人教版

上传人:san****019 文档编号:86072396 上传时间:2019-03-15 格式:PPT 页数:105 大小:2.69MB
返回 下载 相关 举报
黑龙江省虎林市高级中学高二化学 22《分子的立体构型》课件 新人教版_第1页
第1页 / 共105页
黑龙江省虎林市高级中学高二化学 22《分子的立体构型》课件 新人教版_第2页
第2页 / 共105页
黑龙江省虎林市高级中学高二化学 22《分子的立体构型》课件 新人教版_第3页
第3页 / 共105页
黑龙江省虎林市高级中学高二化学 22《分子的立体构型》课件 新人教版_第4页
第4页 / 共105页
黑龙江省虎林市高级中学高二化学 22《分子的立体构型》课件 新人教版_第5页
第5页 / 共105页
点击查看更多>>
资源描述

《黑龙江省虎林市高级中学高二化学 22《分子的立体构型》课件 新人教版》由会员分享,可在线阅读,更多相关《黑龙江省虎林市高级中学高二化学 22《分子的立体构型》课件 新人教版(105页珍藏版)》请在金锄头文库上搜索。

1、第二节 分子的立体构型,第一课时 价层互斥理论,活动:,1、利用几何知识分析一下,空间分布的两个点是否一定在同一直线?,迁移:两个原子构成的分子,将这2个原子看成两个点,则它们在空间上可能构成几种形状?分别是什么?,O2,HCl,活动:,2、利用几何知识分析一下,空间分布的三个点是否一定在同一直线上?,迁移:三个原子构成的分子,将这3个原子看成三个点,则它们在空间上可能构成几种形状?分别是什么?,结论:,在多原子构成的分子中,由于原子间排列的空间顺序不一样,使得分子有不同的结构,这就是所谓的分子的立体构型。,复 习 回 顾,共价键,键,键,键参数,键能,键长,键角,衡量化学键稳定性,描述分子的

2、立体结构的重要因素,成键方式 “头碰头”,呈轴对称,成键方式 “肩并肩”,呈镜面对称,一、形形色色的分子,O2,HCl,H2O,CO2,1、双原子分子(直线型),2、三原子分子立体结构(有直线形和V形),、四原子分子立体结构(直线形、平面三角形、三角锥形、正四面体),(平面三角形,三角锥形),C2H2,CH2O,NH3,P4,、五原子分子立体结构,最常见的是正四面体,CH4,CH3CH2OH,CH3COOH,C6H6,5、其它分子立体结构,C60,C20,C40,C70,资料卡片:,形形色色的分子,早年的科学家主要靠对物质的宏观性质进行系统总结得出规律后进行推测,如今,科学家已经创造了许许多多

3、测定分子结构的现代仪器,红外光谱就是其中的一种。 分子中的原子不是固定不动的,而是不断地振动着的。所谓分子立体结构其实只是分子中的原子处于平衡位置时的模型。当一束红外线透过分子时,分子会吸收跟它的某些化学键的振动频率相同的红外线,再记录到图谱上呈现吸收峰。通过计算机模拟,可以得知各吸收峰是由哪一个化学键、哪种振动方式引起的,综合这些信息,可分析出分子的立体结构。,科学视野分子的立体结构是怎样测定的? (指导阅读P37),测分子体结构:红外光谱仪吸收峰分析。,同为三原子分子,CO2 和 H2O 分子的空间结构却不同,什么原因?,思考:,同为四原子分子,CH2O与 NH3 分子的的空间结构也不同,

4、什么原因?,同为四原子分子,CH2O与 NH3 分子的的空间结构也不同,什么原因?,思考:,同为三原子分子,CO2 和 H2O 分子的空间结构却不同,什么原因?,为了探究其原因,发展了许多结构理论。有一种十分简单的理论叫做价层电子对互斥理论,这种简单的理论可以用来预测分子的立体结构。,二、价层互斥理论,1.内容,对ABn型的分子或离子,中心原子A价层电子对(包括成键键电子对和未成键的孤对电子对)之间由于存在排斥力,将使分子的几何构型总是采取电子对相互排斥最小的那种构型,以使彼此之间斥力最小,分子体系能量最低,最稳定。,键电子对和孤对电子对,排斥力最小,二、价层互斥理论,2.价层电子对(键电子对

5、和未成键的孤对电子对),H2O,NH3,CO2,CH4,2,3,4,2,2,2,4,3,1,4,4,0,4,2,0,2,=键个数+中心原子上的孤对电子对个数,价层电子对数,键电子对数 = 与中心原子结合的原子数,中心原子上的孤电子对数 =(a-xb),2.成键键电子对和未成键的孤对电子对,键电子对数 = 与中心原子结合的原子数,=键个数+中心原子上的孤对电子对个数,价层电子对数,6,1,5-1=4,0,4+2=6,0,2,2,4,1,3,2,孤电子对的计算,6,2,2,1,=(a-xb),分析下表中分子或离子的孤电子对数,S,N,C,C,S,0,1,4,4,1,2,2,6,6,4,8,3,2,

6、4,2,0,0,2,2,0,中心原子上的孤对电子也要占据中心原子周围的空间,并参与互相排斥。例如,H2O上有2对孤对电子,跟中心原子周围的键加起来都是4,它们相互排斥,形成四面体,因而H2O分子呈V形。,思考:根据价层电子对互斥理论分析,为什么水是V 型的结构?,VSEPR模型立体结构,H2O的立体结构,二、价层互斥理论,剖析内容,对ABn型的分子或离子,中心原子A价层电子对(包括成键键电子对和未成键的孤对电子对)之间由于存在排斥力,将使分子的几何构型总是采取电子对相互排斥最小的那种构型,以使彼此之间斥力最小,分子体系能量最低,最稳定。,排斥力最小,A,4.价层电子对互斥模型(VSEPR模型)

7、:,对ABn型的分子或离子,中心原子A价层电子对(包括成键键电子对和未成键的孤对电子对)之间由于存在排斥力,将使分子的几何构型总是采取电子对相互排斥最小的那种构型,以使彼此之间斥力最小,分子体系能量最低,最稳定。,A,3,直线,平面三角形,正四面体,价层电子对数:,2,4,VSEPR模型:,. . . . .,正八面体,三角双锥,5,6,3.价电子对的空间构型即VSEPR模型,电子对数目:2 3 4 VSEPR模型:,二、价层互斥理论,直线,平面三角形,正四面体,二、价层互斥理论,4. VSEPR模型应用预测分子立体构型,2,3,2,0,0,1,直线形,直线形,平面三角形,平面三角形,V形,平

8、面三角形,中心原子的孤对电子也要占据中心原子的空间,并与成键电子对互相排斥。推测分子的立体模型必须略去VSEPR模型中的孤电子对,二、价层互斥理论,4.价电子对的空间构型即VSEPR模型应用,4,3,2,0,1,2,正四面体,正四面体,正四面体,三角锥形,正四面体,V形,应用反馈,2,0,2,3,空间构型,V形,平面三角形,V 形,2,2,平面三角形,四面体,四面体,分析下表中分子或离子的价层电子对数,并预测其结构,3,4,3,2,2,3,3,2,平面三角形,平面三角形,平面三角形,V形,直线形,直线形,四面体,三角锥形,1,1,3,4,四面体,三角锥形,0,4,4,四面体,正四面体,ABn

9、型分子的VSEPR模型和立体结构,2,3,平面 三角 形,2 0 AB2,直线形 CO2,3 0 AB3,2 1 AB2,价,层,电,子,对,数,平面三角形 BF3,V形,SO2,小结:,直线形,模型,4,正四面 体,4 0 AB4,3 1 AB3,2 2 AB2,正四面体 CH4,三角锥形 NH3,V形,H2O,【小结】,(2)确定价层电子对的空间构型 由于价层电子对之间的相互排斥作用,它们趋向于尽可能地相互远离。于是价层电子对的空间构型与价层电子对数目的关系如下表所示: 这样已知价层电子对的数目,就可以确定它们的空间构型。,1.若ABn型分子的中心原子A上没有未用于形 成共价键的孤对电子,

10、运用价层电子对互斥模 型,下列说法正确的( ) A.若n=2,则分子的立体构型为V形 B.若n=3,则分子的立体构型为三角锥形 C.若n=4,则分子的立体构型为正四面体形 D.以上说法都不正确,C,牛刀小试,2.用价层电子对互斥模型判断SO3的分子构型 A、正四面体形 B、V形 C、三角锥形 D、平面三角形,D,课堂练习: 1、多原子分子的立体结构有多种,三原子分子的立体结构有 形和 形,大多数四原子分子采取 形和 形两种立体结构,五原子分子的立体结构中最常见的是 形。 2 、下列分子或离子中,不含有孤对电子的是 A、H2O、B、H3O+、C、NH3、D、NH4+ 3 、下列分子BCl3、CC

11、l4、H2S、CS2中,其键角由小到大的顺序为 4、以下分子或离子的结构为正四面体,且键角为10928 的是 CH4 NH4+ CH3Cl P4 SO42- A、 B、 C、 D、,直线,V,平面三角,三角锥, ,D,C,正四面体,第二节 分子的立体构型,第二课时杂化理论,活动:请根据价层电子对互斥理论分析CH4的立体构型,新问题1:,1.写出碳原子的核外电子排布图,思考为什么碳原子与氢原子结合形成CH4,而不是CH2 ?,新问题2:,按照我们已经学过的价键理论,甲烷的4个C H单键 都应该是键,然而,碳原子的4个价层原子轨道是3 个相互垂直的2p 轨道和1个球形的2s轨道,用它们跟4 个氢原

12、子的1s原子轨道重叠,不可能得到四面体构型 的甲烷分子,C,为了解决这一矛盾,鲍林提出了杂化轨道理论,C:2s22p2,由1个s轨道和3个p轨道混杂并重新组合成4个能量与形状完全相同的轨道。我们把这种轨道称之为 sp3杂化轨道。,为了四个杂化轨道在空间尽可能远离,使轨道间的排斥最小,4个杂化轨道的伸展方向成什么立体构型?,四个H原子分别以4个s轨道与C原子上的四个sp3杂化轨道相互重叠后,就形成了四个性质、能量和键角都完全相同的S-SP3键,从而构成一个正四面体构型的分子。,三、杂化理论简介,1.概念:在形成分子时,在外界条件影响下若干不同类型能量相近的原子轨道混合起来,重新组合成一组新轨道的

13、过程叫做原子轨道的杂化,所形成的新轨道就称为杂化轨道。,2.要点:,(1)参与参加杂化的各原子轨道能量要相近(同一能级组或相近能级组的轨道);,(2)杂化前后原子轨道数目不变:参加杂化的轨道数目等于形成的杂化轨道数目;但杂化轨道改变了原子轨道的形状方向,在成键时更有利于轨道间的重叠;,三、杂化理论简介,2.要点:,(1)参与参加杂化的各原子轨道能量要相近(同一能级组或相近能级组的轨道);,(2)杂化前后原子轨道数目不变:参加杂化的轨道数目等于形成的杂化轨道数目;但杂化轨道改变了原子轨道的形状方向,在成键时更有利于轨道间的重叠;,(3)杂化前后原子轨道为使相互间排斥力最小,故在空间取最大夹角分布

14、,不同的杂化轨道伸展方向不同;,sp杂化轨道的形成过程,180,每个sp杂化轨道的形状为一头大,一头小, 含有1/2 s 轨道和1/2 p 轨道的成分 两个轨道间的夹角为180,呈直线型,sp 杂化:1个s 轨道与1个p 轨道进行的杂化, 形成2个sp杂化轨道。,Cl,Cl,Be,例如: Sp 杂化 BeCl2分子的形成,Be原子:1s22s2 没有单个电子,,sp2杂化轨道的形成过程,120,每个sp2杂化轨道的形状也为一头大,一头小, 含有 1/3 s 轨道和 2/3 p 轨道的成分 每两个轨道间的夹角为120,呈平面三角形,sp2杂化:1个s 轨道与2个p 轨道进行的杂化, 形成3个sp

15、2 杂化轨道。,例如: Sp2 杂化 BF3分子的形成,B: 1s22s22p1没有3个成单电子,sp3杂化轨道的形成过程,sp3杂化:1个s 轨道与3个p 轨道进行的杂化, 形成4个sp3 杂化轨道。,每个sp3杂化轨道的形状也为一头大,一头小, 含有 1/4 s 轨道和 3/4 p 轨道的成分 每两个轨道间的夹角为109.5, 空间构型为正四面体型,例如: Sp3 杂化 CH4分子的形成,C:2s22p2,三、杂化理论简介,3.杂化轨道分类:,CH4原子轨道杂化,等性杂化:参与杂化的各原子轨道进行成分的均匀混合。 杂化轨道 每个轨道的成分 轨道间夹角( 键角) sp 1/2 s,1/2 p 180 sp2 1/3 s,2/3 p 120 sp3 1/4 s,3/4p 10928,3.杂化轨道分类:,三、杂化理论简介,H2O原子轨道杂化,O原子:2s22p4 有2个单电子,可形成2个共价键,键角应当是90,Why?,杂化,不等性杂化:参与杂化的各原子轨道进行成分上的 不均匀混合。某个杂化轨道有孤电子对,排斥力:孤电子对-孤电子对孤电子对-成键电子对成键电子对-成键电子对,三、杂化理论简介,4.杂化类型判断:,因为杂化轨道只能用于形成键或

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 教学课件 > 高中课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号