2013年中考数学易错题综合专题一

上传人:xiao****1972 文档编号:85085079 上传时间:2019-03-07 格式:DOC 页数:11 大小:476.50KB
返回 下载 相关 举报
2013年中考数学易错题综合专题一_第1页
第1页 / 共11页
2013年中考数学易错题综合专题一_第2页
第2页 / 共11页
2013年中考数学易错题综合专题一_第3页
第3页 / 共11页
2013年中考数学易错题综合专题一_第4页
第4页 / 共11页
2013年中考数学易错题综合专题一_第5页
第5页 / 共11页
点击查看更多>>
资源描述

《2013年中考数学易错题综合专题一》由会员分享,可在线阅读,更多相关《2013年中考数学易错题综合专题一(11页珍藏版)》请在金锄头文库上搜索。

1、2013年中考数学易错题综合专题一一选择题(共3小题)1下列各式计算正确的是()A2x3x3=2x6B(2x2)4=8x8Cx2x3=x6D(x)6(x)2=x42(2008临沂)若不等式组的解集为x0,则a的取值范围为()Aa0Ba=0Ca4Da=43(2008临沂)如图,已知正三角形ABC的边长为1,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设EFG的面积为y,AE的长为x,则y关于x的函数的图象大致是()ABCD二解答题(共4小题)4(2012鸡西)顶点在网格交点的多边形叫做格点多边形,如图,在一个99的正方形网格中有一个格点ABC设网格中小正方形的边长为1个单位长度(

2、1)在网格中画出ABC向上平移4个单位后得到的A1B1C1;(2)在网格中画出ABC绕点A逆时针旋转90后得到的AB2C2;(3)在(1)中ABC向上平移过程中,求边AC所扫过区域的面积5如图,在ABC中BAC=90,AB=AC=2,圆A的半径1,点O在BC边上运动(与点B,C不重合),设BO=x,AOC的面积是y(1)求y关于x的函数关系式及自变量的取值范围;(2)以点O为圆心,BO为半径作圆O,求当O与A相切时,AOC的面积6(2009黄石)正方形ABCD在如图所示的平面直角坐标系中,A在x轴正半轴上,D在y轴的负半轴上,AB交y轴正半轴于E,BC交x轴负半轴于F,OE=1,OD=4,抛物

3、线y=ax2+bx4过A、D、F三点(1)求抛物线的解析式;(2)Q是抛物线上D、F间的一点,过Q点作平行于x轴的直线交边AD于M,交BC所在直线于N,若S四边形AFQM=SFQN,则判断四边形AFQM的形状;(3)在射线DB上是否存在动点P,在射线CB上是否存在动点H,使得APPH且AP=PH?若存在,请给予严格证明;若不存在,请说明理由7(2007重庆)下图是我市去年夏季连续60天日最高气温统计图的一部分根据上图提供的信息,回答下列问题:(1)若日最高气温为40及其以上的天数是最高气温为3035的天数日的两倍,那么日最高气温为3035的天数有_天,日最高气温为40及其以上的天数有_天;(2

4、)补全该条形统计图;(3)重庆市高温天气劳动保护办法规定,从今年6月1日起,劳动者在37及其以上的高温天气下工作,除用人单位全额支付工资外,还应享受高温补贴具体补贴标准如下表:某建筑企业现有职工1000人,根据去年我市高温天气情况,在今年夏季同期的连续60天里,预计该企业最少要发放高温补贴共_元易错题数学组卷参考答案与试题解析一选择题(共3小题)1下列各式计算正确的是()A2x3x3=2x6B(2x2)4=8x8Cx2x3=x6D(x)6(x)2=x4考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方分析:根据合并同类项,只把系数相加减,字母与字母的次数不变;积的乘方,等于把

5、积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解解答:解:A、应为2x3x3=x3,错误;B、应为(2x2)4=16x8,错误;C、应为x2x3=x5,错误;D、(x)6(x)2=x4,正确故选D点评:本题考查同底数幂的乘法,同底数幂的除法,积的乘方的性质,合并同类项法则,熟练掌握运算性质是解题的关键2(2008临沂)若不等式组的解集为x0,则a的取值范围为()Aa0Ba=0Ca4Da=4考点:解一元一次不等式组分析:解出不等式组的解集,然后与x0比较,从而得出a的范围解答:解:由(1)得:x由(2)得:

6、x4又x0=0解得:a=0故选B点评:本题是已知不等式组的解集,求不等式中另一未知数的问题可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数3(2008临沂)如图,已知正三角形ABC的边长为1,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设EFG的面积为y,AE的长为x,则y关于x的函数的图象大致是()ABCD考点:动点问题的函数图象专题:几何图形问题分析:根据题意,易得AEG、BEF、CFG三个三角形全等,且在AEG中,AE=x,AG=1x;可得AEG的面积y与x的关系;进而可判断得则y关于x的函数的图象的大致形状解答:解:根据题意,有AE=BF=C

7、G,且正三角形ABC的边长为1,故BE=CF=AG=1x;故AEG、BEF、CFG三个三角形全等在AEG中,AE=x,AG=1x则SAEG=AEAGsinA=x(1x);故y=SABC3SAEG=3x(1x)=(3x23x+1)故可得其大致图象应类似于二次函数;故答案为C点评:本题考查动点问题的函数图象问题,注意掌握各类函数图象的特点二解答题(共4小题)4(2012鸡西)顶点在网格交点的多边形叫做格点多边形,如图,在一个99的正方形网格中有一个格点ABC设网格中小正方形的边长为1个单位长度(1)在网格中画出ABC向上平移4个单位后得到的A1B1C1;(2)在网格中画出ABC绕点A逆时针旋转90

8、后得到的AB2C2;(3)在(1)中ABC向上平移过程中,求边AC所扫过区域的面积考点:作图-旋转变换;作图-平移变换专题:作图题分析:(1)根据图形平移的性质画出平移后的A1B1C1即可;(2)根据图形旋转的性质画出ABC绕点A逆时针旋转90后得到的AB2C2;(3)根据ABC向上平移4个单位后得到的A1B1C1,ABC向上平移过程中,求边AC所扫过区域是以4为边长,以2为高的平行四边形,由平行四边形的面积公式即可得出结论解答:解:(1)、(2)如图所示:(3)ABC向上平移4个单位后得到的A1B1C1,ABC向上平移过程中,边AC所扫过区域是以4为边长,以2为高的平行四边形,边AC所扫过区

9、域的面积=42=8点评:本题考查的是平移变换及旋转变换,熟知图形经过平移与旋转后所得图形与原图形全等是解答此题的关键5如图,在ABC中BAC=90,AB=AC=2,圆A的半径1,点O在BC边上运动(与点B,C不重合),设BO=x,AOC的面积是y(1)求y关于x的函数关系式及自变量的取值范围;(2)以点O为圆心,BO为半径作圆O,求当O与A相切时,AOC的面积考点:切线的判定;函数自变量的取值范围;三角形的面积;等腰直角三角形分析:(1)由BAC=90,AB=AC=2 ,根据勾股定理即可求得BC,且B=C,然后作AMBC,由SAOC=OCAM,即可求得y关于x的函数解析式;(2)由O与A外切或

10、内切,即可求得ON的值,继而求得AOC的面积解答:解:(1)BAC=90,AB=AC=2 ,由勾股定理知BC=4,且B=C,作AMBC,则BAM=45,BM=CM=2=AM,BO=x,则OC=4x,SAOC=OCAM=(4x)2=4x,即y=4x (0x4);(2)作ADBC于点D,ABC为等腰直角三角形,BC=4,AD为BC边上的中线,AD=2,SAOC=,BO=x,AOC的面积为y,y=4x(0x4),过O点作OEAB交AB于E,A的半径为1,OB=x,当两圆外切时,OA=1+x,ABC为等腰直角三角形,B=45,BE=OE=,在AEO中,AO2=AE2+OE2=(ABBE)2+OE2,(

11、1+x)2=(2)2+()2,x=,AOC面积=y=4x,AOC面积=;当两圆内切时,OA=x1,AO2=AE2+OE2=(ABBE)2+OE2,(x1)2=(2)2+()2,x=,AOC面积=y=4x=4=,AOC面积为或点评:此题考查了相切两圆的性质,三角形面积的求解方法,以及勾股定理的应用等知识此题综合性较强,难度适中,解题的关键是方程思想与数形结合思想的应用6(2009黄石)正方形ABCD在如图所示的平面直角坐标系中,A在x轴正半轴上,D在y轴的负半轴上,AB交y轴正半轴于E,BC交x轴负半轴于F,OE=1,OD=4,抛物线y=ax2+bx4过A、D、F三点(1)求抛物线的解析式;(2

12、)Q是抛物线上D、F间的一点,过Q点作平行于x轴的直线交边AD于M,交BC所在直线于N,若S四边形AFQM=SFQN,则判断四边形AFQM的形状;(3)在射线DB上是否存在动点P,在射线CB上是否存在动点H,使得APPH且AP=PH?若存在,请给予严格证明;若不存在,请说明理由考点:二次函数综合题专题:压轴题分析:(1)根据三角形OEAADO,D(0,4),E(0,1)可求出A点的坐标,再根据RtADERtABF可求出F点的坐标,把A,F两点的坐标代入二次函数的解析式即可取出未知数的值,进而求出其解析式;(2)根据“过Q点作平行于x轴的直线交边AD于M,交BC所在直线于N”,又知AMCB,可以

13、判断,四边形AMNF为平行四边形,可得NM=AF=5,设QM=m,可用m表示出QN的长,利用S四边形AFQM=SFQN,可以求出m的值;可知若Q(a,b)则必有M(a+1,b),代入二次函数解析式,可求得M的坐标,依据坐标特点可判断四边形的形状;(3)先根据题意画出图形,根据图形可看出,有三种情况符合题目条件:通过证明RtPQHRtAPN得到APN+HPQ=90,进一步得到APPH,通过证明RtPMHRtPAN和PNBH得到HPA=NPA+HPN=MHP+HPM=90,通过证明RtPNHRtPMA和PNAB,得到HPA=90解答:解:(1)依条件有D(0,4),E(0,1)EAO+OAD=90,ADO+OAD=90,EAO=ADO,又AOE=AOD=90,OEAADO知OA2=OEOD=4A(2,0)由RtADERtABF得DE=AFF(3,0)将A,F的坐标代入抛物线方程,得a=b=抛物线的解析式为y=x2+x4;(2)设QM=m,S四边形AFQM=(m+5)|yQ|,SFQN=(5m

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 试题/考题 > 高中试题/考题

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号