数字信号处理_基于计算机的方法_第四版_Sanjit-K.Mitra_习题答案 第9章

上传人:共*** 文档编号:80019277 上传时间:2019-02-18 格式:PDF 页数:38 大小:7.48MB
返回 下载 相关 举报
数字信号处理_基于计算机的方法_第四版_Sanjit-K.Mitra_习题答案 第9章_第1页
第1页 / 共38页
数字信号处理_基于计算机的方法_第四版_Sanjit-K.Mitra_习题答案 第9章_第2页
第2页 / 共38页
数字信号处理_基于计算机的方法_第四版_Sanjit-K.Mitra_习题答案 第9章_第3页
第3页 / 共38页
数字信号处理_基于计算机的方法_第四版_Sanjit-K.Mitra_习题答案 第9章_第4页
第4页 / 共38页
数字信号处理_基于计算机的方法_第四版_Sanjit-K.Mitra_习题答案 第9章_第5页
第5页 / 共38页
点击查看更多>>
资源描述

《数字信号处理_基于计算机的方法_第四版_Sanjit-K.Mitra_习题答案 第9章》由会员分享,可在线阅读,更多相关《数字信号处理_基于计算机的方法_第四版_Sanjit-K.Mitra_习题答案 第9章(38页珍藏版)》请在金锄头文库上搜索。

1、Not for sale 1 SOLUTIONS MANUAL to accompany Digital Signal Processing: A Computer-Based Approach Fourth Edition Sanjit K. Mitra Prepared by Chowdary Adsumilli, John Berger, Marco Carli, Hsin-Han Ho, Rajeev Gandhi, Martin Gawecki, Chin Kaye Koh, Luca Lucchese, Mylene Queiroz de Farias, and Travis Sm

2、ith Copyright 2011 by Sanjit K. Mitra. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of Sanjit K. Mitra, including, but not limited to, in any network or other electronic Storag

3、e or transmission, or broadcast for distance learning. Not for sale 2 Chapter 9 9.1 We obtain the solutions by using Eq. (9.3) and Eq. (9.4). (a) p=110 p/20 =1100.24 /20= 0.0273,s=10s /20 =1049/20= 0.0035. (b) p=110 p/20 =1100.14 /20= 0.016,s=10s /20 =1068/20= 0.000398. 9.2 We obtain the solutions b

4、y using Eqs. (9.3) and (9.4). (a) p= 20log101p ()= 20log10(10.04) = 0.3546dB, s= 20log10s( )= 20log100.08()= 21.9382 dB. (b) p= 20log101p ()= 20log10(10.015) = 0.1313dB, s= 20log10s( )= 20log100.04()= 27.9588 dB. 9.3 G(z) = H2(z), or equivalently, G(e j) = H2(ej) = H(ej)2. Let pand s denote the pass

5、band and stopband ripples of H(e j), respectively. Also, let p,2= 2p, and s,2 denote the passband and stopband ripples of G(e j), respectively. Then p,2=1(1p)2, and s,2= (s)2. For a cascade of sections, p,M=1(1p)M,and s,M= (s)M. 9.4 HLP(ej) p s ps s 1+p 1 p 0 HHP(ej) s 1+ p 1 p p s( s)( p) 0 Therefo

6、re, the passband edge and the stopband edge of the highpass filter are given by p,HP= p, and s,HP= s, respectively. 9.5 Note that G(z) is a complex bandpass filter with a passband in the range 0 . Its passband edges are at p,BP=op,and stopband edges at s,BP=os. A real coefficient bandpass transfer f

7、unction can be generated according to GBP(z) = HLP(e joz)+ HLP(e joz) which will have a passband in the range 0 Not for sale 3 and another passband in the range 0. However because of the overlap of the two spectra a simple formula for the bandedges cannot be derived. HLP(ej) p s ps s 1+p 1 p 0 G(ej)

8、 s 1+ p 1 p 0o o+s o+po p o s 9.6 (a) hp(t) = ha(t) p(t) where p(t) =(t nT). n= Thus, hp(t) =ha(nT) n= (t nT) We also have, gn = ha(nT). Now, Ha(s) =ha(t)est dt and Hp(s) =hp(t)est dt =ha(nT)(t nT)est dt n= =ha(nT)esnT n= . Comparing the above expression with G(z) =gnzn n= =h(nT)zn n= , we conclude

9、that G(z) = Hp(s) s= 1 T lnz . We can also show that a Fourier series expansion of p(t) is given by p(t) = 1 T ej(2kt /T) k= . Therefore, hp(t) = 1 T e j(2kt /T) k= ha(t) = 1 T ha(t)ej(2kt /T) k= . Hence, Hp(s) = 1 T Has+ j 2kt T k= . As a result, we have G(z) = 1 T Has+ j 2kt T k= s= 1 T lnz. (7-1)

10、 (b) The transformation from the s-plane to z-plane is given by z = esT. If we express s =o+ jo, then we can write z = re j = eoTe joT . Therefore, Not for sale 4 z = 1,for o1. Or in other words, a point in the left-half -plane is mapped onto a point inside the unit circle in the z-plane, a point in

11、 the right-half -plane is mapped onto a point outside the unit circle in the z-plane, and a point on the j-axis in the s- plane is mapped onto a point on the unit circle in the z-plane. As a result, the mapping has the desirable properties enumerated in Section 9.1.3. (c) However, all points in the

12、s-plane defined by s =o+ jo j 2k T , k = 0, 1, 2, , a are mapped onto a single point in the z-plane as z = eoTe j o2k T T = eoTe joT . The mapping is illustrated in the figure below 1 1 jzIm zRe z-plane -planes T 3 T T 3 T Note that the strip of width 2/T in the s-plane for values of s in the range

13、T T is mapped into the entire z-plane, and so are the adjacent strips of width 2/T. The mapping is many-to-one with infinite number of such strips of width 2/T. It follows from the above figure and also from Eq. (7-1) that if the frequency response Ha(j) = 0 for T , then G(e j) =1 T Ha(j T ) for , a

14、nd there is no aliasing. (d) For z = e j = e jT , or equivalently, = T. 9.7 Assume ha(t) is causal. Now, ha(t) =Ha(s)estds. Hence, gn = ha(nT) =Ha(s)esnTds. Therefore, Not for sale 5 G(z) =gnzn n=0 =Ha(s)esnTzn n=0 ds =Ha(s)zn n=0 esnTds = Ha(s) 1esTz1 ds . Hence G(z) =Residues Ha(s) 1esTz1 all poles of Ha(s) . 9.8 Ha(s) = A s+ . The transfer function has a pole at s = . Now G(z) = Residue at s= A

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 其它相关文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号