《黔西县高中2018-2019学年高二上学期第一次月考试卷数学》由会员分享,可在线阅读,更多相关《黔西县高中2018-2019学年高二上学期第一次月考试卷数学(17页珍藏版)》请在金锄头文库上搜索。
1、精选高中模拟试卷黔西县高中2018-2019学年高二上学期第一次月考试卷数学班级_ 姓名_ 分数_一、选择题1 如图,一个底面半径为R的圆柱被与其底面所成角是30的平面所截,截面是一个椭圆,则该椭圆的离心率是( )ABCD2 已知集合P=x|1xb,bN,Q=x|x23x0,xZ,若PQ,则b的最小值等于( )A0B1C2D33 设aR,且(ai)2i(i为虚数单位)为正实数,则a等于( )A1B0C1D0或14 (2015秋新乡校级期中)已知x+x1=3,则x2+x2等于( )A7B9C11D135 定义新运算:当ab时,ab=a;当ab时,ab=b2,则函数f(x)=(1x)x(2x),x
2、2,2的最大值等于( )A1B1C6D126 已知ABC中,a=1,b=,B=45,则角A等于( )A150B90C60D307 若P是以F1,F2为焦点的椭圆=1(ab0)上的一点,且=0,tanPF1F2=,则此椭圆的离心率为( )ABCD 8 已知三棱锥ABCO,OA、OB、OC两两垂直且长度均为6,长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在BCO内运动(含边界),则MN的中点P的轨迹与三棱锥的面所围成的几何体的体积为()AB或36+C36D或369 在等差数列中,首项公差,若,则 A、B、 C、D、10如图,在正四棱锥SABCD中,E,M,N分别是BC,CD,SC的中点
3、,动点P在线段MN上运动时,下列四个结论:EPBD;EPAC;EP面SAC;EP面SBD中恒成立的为( )ABCD11已知是虚数单位,若复数在复平面内对应的点在第四象限,则实数的值可以是( )A-2 B1 C2 D312如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为( )A11B11.5C12D12.5二、填空题13【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)lnx (mR)在区间1,e上取得最小值4,则m_14设满足条件,若有最小值,则的取值范围为 15已知圆的方程为,过点的直线与圆交于两点,若使最小则直线的方程是 16函数y=ax+1(a0
4、且a1)的图象必经过点(填点的坐标)17设集合A=3,0,1,B=t2t+1若AB=A,则t=18【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若,则实数 的取值范围为_三、解答题19已知曲线C1:=1,曲线C2:(t为参数)(1)求C1与C2交点的坐标;(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线C1与C2,写出C1与C2的参数方程,C1与C2公共点的个数和C1与C2公共点的个数是否相同,说明你的理由2015-2016学年安徽省合肥168中学高三(上)10月月考数学试卷(理科)20已知函数f(x)=x2ax+(a1)lnx(a1)() 讨论函数f(x)
5、的单调性;() 若a=2,数列an满足an+1=f(an)(1)若首项a1=10,证明数列an为递增数列;(2)若首项为正整数,且数列an为递增数列,求首项a1的最小值 21在某大学自主招生考试中,所有选报类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B的考生有10人()求该考场考生中“阅读与表达”科目中成绩为A的人数;()若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;()已知参加本考场测试的考生中,恰有两人的
6、两科成绩均为A在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率22【徐州市2018届高三上学期期中】已知函数(,是自然对数的底数).(1)若函数在区间上是单调减函数,求实数的取值范围;(2)求函数的极值;(3)设函数图象上任意一点处的切线为,求在轴上的截距的取值范围23如图所示,在正方体ABCDA1B1C1D1中,E是棱DD1的中点()求直线BE与平面ABB1A1所成的角的正弦值;()在棱C1D1上是否存在一点F,使B1F平面A1BE?证明你的结论24平面直角坐标系xOy中,圆C1的参数方程为(为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极
7、坐标方程为=4sin(1)写出圆C1的普通方程及圆C2的直角坐标方程;(2)圆C1与圆C2是否相交,若相交,请求出公共弦的长;若不相交请说明理由 黔西县高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1 【答案】A【解析】解:因为底面半径为R的圆柱被与底面成30的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R,长半轴为: =,a2=b2+c2,c=,椭圆的离心率为:e=故选:A【点评】本题考查椭圆离心率的求法,注意椭圆的几何量关系的正确应用,考查计算能力2 【答案】C【解析】解:集合P=x|1xb,bN,Q=x|x23x0,xZ=1,2,PQ,可得b的最小值为
8、:2故选:C【点评】本题考查集合的基本运算,交集的意义,是基础题3 【答案】B【解析】解:(ai)2i=2ai+2为正实数,2a=0,解得a=0故选:B【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题4 【答案】A【解析】解:x+x1=3,则x2+x2=(x+x1)22=322=7故选:A【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题5 【答案】C【解析】解:由题意知当2x1时,f(x)=x2,当1x2时,f(x)=x32,又f(x)=x2,f(x)=x32在定义域上都为增函数,f(x)的最大值为f(2)=232=6故选C6 【答案】D【解析】解:,B=45
9、根据正弦定理可知 sinA=A=30故选D【点评】本题主要考查正弦定理的应用属基础题7 【答案】A【解析】解:,即PF1F2是P为直角顶点的直角三角形RtPF1F2中,=,设PF2=t,则PF1=2t=2c,又根据椭圆的定义,得2a=PF1+PF2=3t此椭圆的离心率为e=故选A【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题8 【答案】D【解析】【分析】由于长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体
10、,故MN的中点P的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可【解答】解:因为长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在BCO内运动(含边界), 有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,则MN的中点P的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或故选D9 【答案】A【解析】, 10【答案】 A【解析】解:如图所示,连接AC、BD相交于点O,连接EM,EN在中:由异面直线的定义可知:EP与BD是异面直线,不可能EPBD,因此不正确;在中:由正四棱锥SABCD,可得SO底面ABCD,ACBD,SOA
11、CSOBD=O,AC平面SBD,E,M,N分别是BC,CD,SC的中点,EMBD,MNSD,而EMMN=M,平面EMN平面SBD,AC平面EMN,ACEP故正确在中:由同理可得:EM平面SAC,若EP平面SAC,则EPEM,与EPEM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直即不正确在中:由可知平面EMN平面SBD,EP平面SBD,因此正确故选:A【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养11【答案】A【解析】试题分析:,对应点在第四象限,故,A选项正确.考点:复数运算12【答案】C【解析】解:由题意,0.065+x0.1=0.5,所以x为
12、2,所以由图可估计样本重量的中位数是12故选:C二、填空题13【答案】3e【解析】f(x),令f(x)0,则xm,且当xm时,f(x)m时,f(x)0,f(x)单调递增若m1,即m1时,f(x)minf(1)m1,不可能等于4;若1me,即eme,即me时,f(x)minf(e)1,令14,得m3e,符合题意综上所述,m3e.14【答案】【解析】解析:不等式表示的平面区域如图所示,由得,当时,平移直线可知,既没有最大值,也没有最小值;当时,平移直线可知,在点A处取得最小值;当时,平移直线可知,既没有最大值,也没有最小值;当时,平移直线可知,在点A处取得最大值,综上所述,15【答案】【解析】试题分析:由圆的方程为,表示圆心在,半径为的圆,点到圆心的距离等于,小于圆的半径,所以点在圆内,所以当时,最小,此时,由点斜式方程可得,直线的方程为,即.考点:直线与圆的