计算机前沿技术的相关知识

上传人:豆浆 文档编号:751048 上传时间:2017-05-13 格式:DOC 页数:9 大小:355KB
返回 下载 相关 举报
计算机前沿技术的相关知识_第1页
第1页 / 共9页
计算机前沿技术的相关知识_第2页
第2页 / 共9页
计算机前沿技术的相关知识_第3页
第3页 / 共9页
计算机前沿技术的相关知识_第4页
第4页 / 共9页
计算机前沿技术的相关知识_第5页
第5页 / 共9页
点击查看更多>>
资源描述

《计算机前沿技术的相关知识》由会员分享,可在线阅读,更多相关《计算机前沿技术的相关知识(9页珍藏版)》请在金锄头文库上搜索。

1、 D-Wave 和第一台商用量子计算机Orion 猎户座:传说上帝就是来自这里量子力学,它从一个最基本的层面上描绘了整个自然界是如何运作的。使用量子力学的法则构建的量子力学计算机不仅仅意味着它会工作在纳米水平。这也意味着量子力学计算机的每一个设备都要保持温度足够的寒冷,足以实现量子效应。这也就是说为什么这套由 D-Wave公司制造的 Orion 量子计算机系统,运行在零下负 250 度的缘故。这个温度要比宇宙星际空间中大多数地方都要冷。宇宙空间中的绝对零度也仅为负 273 度。这台量子计算机与绝对零度非常之接近。 D-Wave 是全世界唯一从事商业量子计算的公司。总部位于加拿大的温哥华。去年该

2、公司已经展示过 16-qubit 的量子计算机。该公司的 CTO Geordie Rose 表示,强大的量子级超级计算机,已经不是科幻小说中的虚构情节,现在已经可以第一次用于商业领域。今天 D-Wave已经制造出了 28-qubit 的量子计算机,这标志着量子计算机很快会应用于真正的计算领域。qubit 是量子位的意思,它与传统计算机中的 bit 位有些相似,qubit 是量子计算机中最为基本的信息单元。由于量子可以同时具备两种存在的形态,因此标记有 16-qubit 能力的量子计算机就可以同时进行 2 的 16 次方运算。也就是同时进行 64000 次运算。需要注意的是,这是真正意义上的同时

3、并行运算,传统的单核心计算机在同一时刻仅仅能进行一次运算。 遥遥领先于其他量子计算的开发团队,D-Wave 使用现有的半导体制造技术和芯片制造技术,代替了光电路、量子基点、激光容器或是其他要求苛刻的高端量子实验工具。D-Wave 所面临的另一半问题是量子计算机的应用软件开发工作。前所未有的超强计算机,前所未有的海量数据处理能力。要想发挥出量子计算的优势,软件和算法也是相当重要的一个环节。目前D-Wave 已经承诺即将发布新的量子计算机应用程序开发工具。D-wave 所研发的量子处理器,其底部固定在过滤机和制冷单元上。因为整个架构都是沉浸在温度为 3 Kelvin 的液氮中,而芯片上的冷却单元更

4、是将温度调节到了 10 milliKelvin。Rose 给量子计算机下了一个定义:量子是组成事物最为基本的粒子,是绘制自然界一切最为基本的语言。而在量子级别所打造的计算机,会给人留下深刻的印象,它的运算能力要远远超越传统的电脑。目前电脑的性能发展,受到了物理学定律的制约。我们的制造工艺技术再先进,也无法超越物理定律本身,因为他们的制造理论仅仅是处在经典物理学阶层。而到了量子计算机中,所使用的硬件服从的是量子力学原理。这些东西很微小,而且也十分寒冷,构建量子计算机需要异乎寻常的材料。极端冷却与超导体D-Wave 在制造量子芯片的时候,使用了一种非常特殊的材料铌。当温度足够低的时候,这种铌材料就

5、变成了超导体。常温下的铌具有普通金属的导电性,电子会以电流的形式在其中穿梭,不过它的导电性能并不是理想化的,常温下的铌会有较高的电阻值。 然而,当铌在超低温状态下,变成超导体的时候,金属内流动的电子就会自动配对。即电子绑成库伯对(Cooper pair),其运动能够耦合为长串的电子。这些电子与导体的点阵振动在冷却到接近绝对零度时同步,这样就避免与形成电阻的金属原子发生碰撞。此时铌的电阻值也就为零。 库伯对在进入芯片后,会由绝缘体将他们的联系打破。像是创造电子一样,这些粒子可以沿着绝缘层的通道进行传播,可以像电流一样有效的进行传导。铌可以像电流一样传输,顺时针流动,逆时针流动,又或者联合两个方向

6、一起流动。由此,就会呈现出“0”、“1”或者是叠加的二进制值。这就是量子计算机中最基本的元素qubit 量子位。量子芯片是由一个连续的金属轨道组成的,在其下面使用硅元素做基板。这些基板与目前任何半导体制造的工艺相同。但是在其上面,却有一个金属绝缘层。这是一个完全基于磁性金属的东西,所有的信息都朝着电流流动的方向进行存储。 D-Wave 的 28-qubit 芯片,他们每一代芯片都是按照字母顺序以月神命名的。28-qubit 芯片研发代号,Leda量子流的流动方向会折合成一个 qubit 量子位的值。量子流动的朝向就可以代表二进制中的0 或 1。临近的量子位会跑在相同的或相反的方向,并且能量壁垒

7、可以作用在不同的量子位形态中。D-Wave 使用环形的电路结构来处理 qubit 数据。目前最高级的 Leda 芯片具备 28个环可以实现 28-qubit 的运算能力。但是所有的环并不都是互相联通的,仅仅是相互临近的环才是联通的。 库伯对在铌中通过的时候从技术上讲,它们处于一种“玻色子”状态。玻色子状态是具有零或整数自旋状态,并且任意数目的相同粒子占据相同量子状态的统计学规则的粒子,如光子、 介子或 粒子。因此可以说他们具备相同的量子态,这就是超导量子最重要的特性。利用这种特性,可以简化量子芯片的复杂度。在 2002 年,D-wave 还仅仅能制造出 2-qubit 的芯片,到了 2007

8、年,已经可以制造出 16-qubit 的芯片了。今年 D-wave 已经可以制造出28-qubit 的芯片了。那么未来 512 和 1024 qubti 也是有可能实现的。 在 D-Wave 的量子芯片中,只有部分环形铌电路是相连的。根据超导量子的特性,电路可以被大幅简化。量子计算机运行的环境许多人脑海中认为,真正的量子计算机使用的是超级计算机的计算指令集。并且他们可以实时的处理器天气预报,从分子级别制造特效药物,破解超长的密码等等。随着量子计算机商业化的浪潮席卷而来,这些应用也将越来越普及。 不过从某种意义上来说,“广泛”的应用其实相当狭义。目前量子计算机受限于体积、运行环境和制造成本等许多

9、因素的制约,还不能像许多科幻小说描述的那样高度的智能化。目前它仅仅可以作为一个模拟计算机。作为量子计算机的第一代产品,你可以把它想像为一种特殊用途的芯片。重点是量子计算技术还处在不断的高速发展和成熟期。目前量子计算机本身虽然有着无限的潜力,但是也有许多后续性、常规性和基础性问题需要解决。例如开发 C+程序,开发编译器,开发 API 等工作,都需要进一步完善。 运行在 Orion 超级量子计算机上的图片匹配搜索程序而现在的 Orion 量子计算机的体积也是一个问题。目前 D-Wave 制造量子处理器的工艺仅仅停留在微米级别,他们需要进一步缩小芯片的体积。他们正在朝着 5平方毫米的芯片面积迈进。这

10、样可以进一步减小冷却设备的体积。Orion 除了量子处理器以外,系统中大多数设备也需要极端的冷却。CTO:Geordie Rose 和冷却过滤系统所有的量子计算机设备都会存放在一个隔离舱内,这几乎是一个全金属的磁性空间,里面充满了电磁辐射。在它的内部,一半是冷却装置,一半是过滤装置。在量子计算机运行的时候,温度达到了 milliKelvin 级别。仅仅高于绝对零度0.01 度。而在一般的星际空间里,最低的温度也就在 2.7 Kelvin 左右。并且在量子芯片运行的时候需要一个真空的磁性空间。其中也有许多非常小的配件。例如一些电路设备所必须的元件。 细心的读者也许会问,为什么需要如此庞大的散热设

11、备呢?其实量子计算机的功耗是相当惊人的。假设 1 吨铀 235 通过核发电机 1 天能提供 7000 万瓦伏电量,但这些电量在短短的 10 天就会被消耗殆尽,这是最保守的估计。如果一台量子计算机一天工作 4 小时左右,那么它的寿命将只有可怜的 2 年,如果工作 6 小时以上,恐怕连 1 年都不行,这也是最保守的估计。假定量子计算机每小时的功耗70 摄氏度,那么 2 小时内机箱累计温度将达到 200 度,6 小时后恐怕散热装置都要被融化了,这还是最保守的估计!除了目前这台 Orion 猎户座量子计算机之外,D-Wave 正在研发一种新的远程访问软体。这样更多的科学家和研究人员就可以共享一台量子计

12、算机。可以直接在系统中输入机器语言,并且图形化操作界面将更加人性化。同时 D-Wave 也希望将这种软体作为行业的标准,以解决不同研发机构的兼容性问题。 这是在电子显微镜下的量子计算机芯片,与其他量子计算技术少有不同。D-Wave所使用的材料,完全是基于现有标准半导体技术的。 附件:名词解释Orion 猎户座Orion 猎户座:赤道带星座之一。位于双子座、麒麟座、大犬座、金牛座天兔座,波江座与小犬座之间,其北部沉浸在银河之中。星座主体由参宿四和参宿七等 4 颗亮星组成一个大四边形。在四边形中央有 3 颗排成一直线的亮星,设想为系在猎人腰上的腰带,另外在这 3 颗星下面,又有 3 颗小星,它们是

13、挂在腰带上的剑。整个形象就像一个雄赳赳站着的猎人,昂着挺胸,十分壮观,自古以来一直为人们所注目。 量子量子一词来自拉丁语 quantus,意为“多少”,代表“相当数量的某事”。在物理学中常用到量子的概念,量子是一个不可分割的基本个体。例如,一个“光的量子”是光的单位。而量子力学、量子光学等等更成为不同的专业研究领域。其基本概念是所有的有形性质也许是可量子化的。量子化 指其物理量的数值会是一些特定的数值,而不是任意值。例如,在(休息状态)的原子中,电子的能量是可量子化的。这能决定原子的稳定和一般问题。在20 世纪的前半期,出现了新的概念。许多物理学家将量子力学视为了解和描述自然的的基本理论。 量

14、子力学量子力学(Quantum Mechanics)是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。 量子计算机量子计算机,顾名思义,就是实现量子计算的机器。要说清楚量子计算,首先看经典计算。经典计算机从物理上可以被描述为对输入信号序列按一定算法进行变换的机器,其算法由计算机的内部逻辑电路来实现。遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。当某个装置处理和计算的是量子信息,运行的是量子算法时,它就是量子计算机。量子计算机的概念源于对可逆计算机的研究。研究可逆计算机的目的是为了解决计算机中的能耗问题。

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号