电磁场与电磁波2-3

上传人:tian****1990 文档编号:74502240 上传时间:2019-01-28 格式:PPT 页数:29 大小:1.14MB
返回 下载 相关 举报
电磁场与电磁波2-3_第1页
第1页 / 共29页
电磁场与电磁波2-3_第2页
第2页 / 共29页
电磁场与电磁波2-3_第3页
第3页 / 共29页
电磁场与电磁波2-3_第4页
第4页 / 共29页
电磁场与电磁波2-3_第5页
第5页 / 共29页
点击查看更多>>
资源描述

《电磁场与电磁波2-3》由会员分享,可在线阅读,更多相关《电磁场与电磁波2-3(29页珍藏版)》请在金锄头文库上搜索。

1、2.4 媒质的电磁特性,1. 电介质的极化现象,媒质对电磁场的响应可分为三种情况:极化、磁化和传导。,描述媒质电磁特性的参数为: 介电常数、磁导率和电导率。,2. 极化强度矢量,描述介质极化程度的物理量, 分子的平均电偶极矩,的物理意义:单位体积内分子电偶 极矩的矢量和。,在线性、各向同性的电介质中, 与电场强度成正比,即, 电介质的电极化率,由于极化,正负电荷发生位移,在电介质内部可能出现净余的极化电荷分布,同时在电介质的表面上有面分布的极化电荷。,3. 极化电荷,( 1 ) 极化电荷体密度,在电介质内任意作一闭合面S,只有电偶极矩穿过S 的分子对 S 内的极化电荷有贡献。,S所围的体积内的

2、极化电荷 为,( 2 ) 极化电荷面密度,紧贴电介质表面取如图所示的闭曲面,则穿过面积元 的极化电荷为,故得到电介质表面的极化电荷面密度为,4. 电位移矢量 介质中的高斯定理,介质的极化过程包括两个方面: 外加电场的作用使介质极化,产生极化电荷; 极化电荷反过来激发电场,两者相互制约,并达到平衡状 态。无论是自由电荷,还是极化电荷,它们都激发电场,服 从同样的库仑定律和高斯定理。,小结:静电场是有源无旋场,电介质中的基本方程为,引入电位移矢量(单位为C/m2 ),将极化电荷体密度表达式 代入 ,有,则有,其积分形式为,(积分形式),(微分形式),,在这种情况下,其中 称为介质的介电常数, 称为

3、介质的相对介电常数(无量纲)。,* 介质有多种不同的分类方法,如:,均匀和非均匀介质 各向同性和各向异性介质 时变和时不变介质,线性和非线性介质 确定性和随机介质,5. 电介质的本构关系,极化强度 与电场强度 之间的关系由介质的性质决定。对于线性各向同性介质, 和 有简单的线性关系,2.4.2 磁介质的磁化 磁场强度,1. 磁介质的磁化,介质中分子或原子内的电子运动形成分子电流,形成分子磁矩,2. 磁化强度矢量,描述磁介质磁化程度的物理量,定义为单位体积中的分子磁矩的矢量和,即,单位为A/m。,磁介质被磁化后,在其内部与表面上可能出现宏观的电流分布,称为磁化电流。,3. 磁化电流,考察穿过任意

4、围线C所围曲面S的电流。只有分子电流与围线相交链的分子才对电流有贡献。与线元dl相交链的分子,中心位于如图所示的斜圆柱内,所交链的电流,穿过曲面S的磁化电流为,(1) 磁化电流体密度,由 ,即得到磁化电流体密度,在紧贴磁介质表面取一长度元dl,与此交链的磁化电流为,(2) 磁化电流面密度,则,即,4. 磁场强度 介质中安培环路定理,分别是传导电流密度和磁化电流密度。,将极化电荷体密度表达式 代入 , 有, 即,外加磁场使介质发生磁化,磁化导致磁化电流。磁化电流同样也激发磁感应强度,两种相互作用达到平衡,介质中的磁感应强度B 应是所有电流源激励的结果:,定义磁场强度 为:,则得到介质中的安培环路

5、定理为:,磁通连续性定理为,小结:恒定磁场是有旋无源场,磁介质中的基本方程为,(积分形式),(微分形式),其中, 称为介质的磁化率(也称为磁化系数)。,其中 称为介质的磁导率, 称为介质的相对磁导率(无量纲)。,顺磁质 抗磁质 铁磁质,磁介质的分类,5. 磁介质的本构关系,对于线性各向同性介质, 与 之间存在简单的线性关系:,磁场强度,磁化强度,磁感应强度,例 有一磁导率为 ,半径为a 的无限长导磁圆柱,其轴线处有无限长的线电流 I,圆柱外是空气(0 ),试求圆柱内外的 、 和 的分布。,解 磁场为平行平面场,且具有轴对称性,应用安培环路定律,得,2.4.3 媒质的传导特性,对于线性和各向同性

6、导电媒质,媒质内任一点的电流密度矢量 J 和电场强度 E 成正比,表示为,这就是欧姆定律的微分形式。式中的比例系数 称为媒质的电导率,单位是S/m(西门子/米)。,存在可以自由移动带电粒子的介质称为导电媒质。在外场作用下,导电媒质中将形成定向移动电流。,2.5 电磁感应定律和位移电流,2.5.1 电磁感应定律,自从1820年奥斯特发现电流的磁效应之后,人们开始研究相反的问题,即磁场能否产生电流。 1881年法拉弟发现,当穿过导体回路的磁通量发生变化时,回路中就会出现感应电流和电动势,且感应电动势与磁通量的变化有密切关系,由此总结出了著明的法拉电磁感应定律。,电磁感应定律 揭示时变磁场产生电场,

7、位移电流 揭示时变电场产生磁场,重要结论: 在时变情况下,电场与磁场相互激励,形成统一 的电磁场。,负号表示感应电流产生的磁场总是阻止磁通量的变化。,1. 法拉弟电磁感应定律的表述,设任意导体回路C围成的曲面为S,其单位法向矢量为 ,则穿过回路的磁通为,当通过导体回路所围面积的磁通量 发生变化时,回路中产生的感应电动势in的大小等于磁通量的时间变化率的负值,方向是要阻止回路中磁通量的改变,即,导体回路中有感应电流,表明回路中存在感应电场 ,回路中的感应电动势可表示为,感应电场是由变化的磁场所激发的电场; 感应电场是有旋场; 感应电场不仅存在于导体回路中,也存在于导体回路之外的 空间; 对空间中

8、的任意回路(不一定是导体回路)C ,都有,因而有,对感应电场的讨论:,相应的微分形式为,(1) 回路不变,磁场随时间变化,这就是推广的法拉第电磁感应定律。,若空间同时存在由电荷产生的电场 ,则总电场 应为 与 之和,即 。由于 ,故有,2. 引起回路中磁通变化的几种情况:,磁通量的变化由磁场随时间变化引起,因此有,称为动生电动势,这就是发电机工作原理。,( 2 ) 导体回路在恒定磁场中运动,( 3 ) 回路在时变磁场中运动,(1) ,矩形回路静止;,(3) ,且矩形回路上的可滑动导体L以匀速 运动。,解:(1) 回路内的感应电动势是由磁场变化产生的,故,例 长为 a、宽为 b 的矩形环中有均匀

9、磁场 垂直穿过,如图所示。在以下三种情况下,求矩形环内的感应电动势。,(2) ,矩形回路的宽边b = 常数,但其长边因可滑动导体L以匀速 运动而随时间增大;,( 3 ) 感应电动势由磁场变化及可滑动导体L在磁场中运动产生,( 2 ) 回路内的感应电动势全部是由导体L在磁场中运动产生,或,问题:随时间变化的磁场要产生电场,那么随时间变化的电场是 否会产生磁场?,2.5.2 位移电流,静态情况下的电场基本方程在非静态时发生了变化,即,这不仅是方程形式的变化,而是一个本质的变化,其中包含了重要的物理事实,即 时变磁场可以激发电场 。,(恒定磁场),1. 全电流定律,而由,非时变情况下,电荷分布随时间

10、变化,由电流连续性方程有,解决办法: 对安培环路定理进行修正,由,将 修正为:,全电流定律:, 微分形式, 积分形式,全电流定律揭示不仅传导电流激发磁场,变化的电场也可以激发磁场。它与变化的磁场激发电场形成自然界的一个对偶关系。,2. 位移电流密度,电位移矢量随时间的变化率,能像电流一样产生磁场,故称“位移电流”。,注:在绝缘介质中,无传导电流,但有位移电流; 在理想导体中,无位移电流,但有传导电流; 在一般介质中,既有传导电流,又有位移电流。,位移电流只表示电场的变化率,与传导电流不同,它不产生热效应。,位移电流的引入是建立麦克斯韦方程组的至关重要的一步,它揭示了时变电场产生磁场这一重要的物理概念。,例 海水的电导率为4S/m,相对介电常数为81,求频率为1MHz时,位移电流振幅与传导电流振幅的比值。,解:设电场随时间作正弦变化,表示为,则位移电流密度为,其振幅值为,传导电流的振幅值为,故,

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号