《虎林市二中2018-2019学年上学期高二数学12月月考试题含解析》由会员分享,可在线阅读,更多相关《虎林市二中2018-2019学年上学期高二数学12月月考试题含解析(15页珍藏版)》请在金锄头文库上搜索。
1、精选高中模拟试卷虎林市二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 若函数y=x2+(2a1)x+1在区间(,2上是减函数,则实数a的取值范围是( )A,+)B(,C,+)D(,2 已知三棱锥ABCO,OA、OB、OC两两垂直且长度均为6,长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在BCO内运动(含边界),则MN的中点P的轨迹与三棱锥的面所围成的几何体的体积为()AB或36+C36D或363 设全集U=MN=1,2,3,4,5,MUN=2,4,则N=( )A1,2,3B1,3,5C1,4,5D2,3,44 若f(x)=sin(2x
2、+),则“f(x)的图象关于x=对称”是“=”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件5 以过椭圆+=1(ab0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A相交B相切C相离D不能确定6 如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )A, B, CV|VDV|0V7 在等差数列中,公差,为的前项和.若向量,且,则的最小值为( )A B C D【命题意图】本题考查等差数列的性质,等差数列的前项和,向量的数量积,基本不等式等基础知识,意在考查学生的学生运算能力,观察分析,解决问题的能力8 在ABC中,内角A,B,C所对的边分别
3、为a,b,c,若sinB=2sinC,a2c2=3bc,则A等于( )A30B60C120D1509 已知直线l平面,P,那么过点P且平行于l的直线( )A只有一条,不在平面内B只有一条,在平面内C有两条,不一定都在平面内D有无数条,不一定都在平面内10已知集合A=0,1,2,则集合B=xy|xA,yA的元素个数为( )A4B5C6D911函数f(x)=x22ax,x1,+)是增函数,则实数a的取值范围是( )ARB1,+)C(,1D2,+)12由两个1,两个2,两个3组成的6位数的个数为( )A45B90C120D360二、填空题13某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂)
4、,要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用若该患者第一天上午点第一次服药,则第二天上午点服完药时,药在其体内的残留量是毫克,若该患者坚持长期服用此药明显副作用(此空填“有”或“无”)14设某总体是由编号为的20个个体组成,利用下面的随机数表选取个个体,选取方法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为_1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405
5、0526 6238【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想15log3+lg25+lg47(9.8)0=16一船以每小时12海里的速度向东航行,在A处看到一个灯塔B在北偏东60,行驶4小时后,到达C处,看到这个灯塔B在北偏东15,这时船与灯塔相距为海里17等比数列an的前n项和为Sn,已知S3=a1+3a2,则公比q=18已知函数f(x)=(2x+1)ex,f(x)为f(x)的导函数,则f(0)的值为三、解答题19(本题满分12分)已知数列的前项和为,().(1)求数列的通项公式;(2)若数列满足,记,求证:().【命题意图】本题考查了利用递推关系求通项公式的技巧,同时也考查
6、了用错位相减法求数列的前项和.重点突出运算、论证、化归能力的考查,属于中档难度.20已知集合A=x|1,xR,B=x|x22xm0()当m=3时,求;A(RB);()若AB=x|1x4,求实数m的值21已知f(x)=log3(1+x)log3(1x)(1)判断函数f(x)的奇偶性,并加以证明;(2)已知函数g(x)=log,当x,时,不等式 f(x)g(x)有解,求k的取值范围22在ABC中,D为BC边上的动点,且AD=3,B=(1)若cosADC=,求AB的值;(2)令BAD=,用表示ABD的周长f(),并求当取何值时,周长f()取到最大值?23已知正项等差an,lga1,lga2,lga4
7、成等差数列,又bn=(1)求证bn为等比数列(2)若bn前3项的和等于,求an的首项a1和公差d24解关于x的不等式12x2axa2(aR)虎林市二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:函数y=x2+(2a1)x+1的图象是方向朝上,以直线x=为对称轴的抛物线又函数在区间(,2上是减函数,故2解得a故选B2 【答案】D【解析】【分析】由于长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,故MN的中点P的轨迹与三棱锥的面所围成的几
8、何体的体积,利用体积分割及球体的体积公式即可【解答】解:因为长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在BCO内运动(含边界), 有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,则MN的中点P的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或故选D3 【答案】B【解析】解:全集U=MN=1,2,3,4,5,MCuN=2,4,集合M,N对应的韦恩图为所以N=1,3,5故选B4 【答案】B【解析】解:若f(x)的图象关于x=对称,则2+=+k,解得=+k,kZ,此时=不一定成立,反之成立,即“f(x)的图象关于x=对称”是“=”的必要不充
9、分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键5 【答案】C【解析】解:设过右焦点F的弦为AB,右准线为l,A、B在l上的射影分别为C、D连接AC、BD,设AB的中点为M,作MNl于N根据圆锥曲线的统一定义,可得=e,可得|AF|+|BF|AC|+|BD|,即|AB|AC|+|BD|,以AB为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|)圆M到l的距离|MN|r,可得直线l与以AB为直径的圆相离故选:C【点评】本题给出椭圆的右焦点F,求以经过F的弦AB为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义
10、和直线与圆的位置关系等知识,属于中档题6 【答案】D【解析】解:根据几何体的正视图和侧视图,得;当该几何体的俯视图是边长为1的正方形时,它是高为2的四棱锥,其体积最大,为122=;当该几何体的俯视图为一线段时,它的底面积为0,此时不表示几何体;所以,该几何体体积的所有可能取值集合是V|0V故选:D【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征是什么,是基础题目7 【答案】A 【解析】8 【答案】C【解析】解:由sinB=2sinC,由正弦定理可知:b=2c,代入a2c2=3bc,可得a2=7c2,所以cosA=,0A180,A=120故选:C【点评】
11、本题考查正弦定理以及余弦定理在解三角形中的应用,考查了转化思想,属于基本知识的考查9 【答案】B【解析】解:假设过点P且平行于l的直线有两条m与nml且nl由平行公理4得mn这与两条直线m与n相交与点P相矛盾又因为点P在平面内所以点P且平行于l的直线有一条且在平面内所以假设错误故选B【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型10【答案】B【解析】解:x=0时,y=0,1,2,xy=0,1,2;x=1时,y=0,1,2,xy=1,0,1;x=2时,y=0,1,2,xy=2,1,0;B=0,1,2,1,2,共5个元素故选:B11【答案】C【解析】
12、解:由于f(x)=x22ax的对称轴是直线x=a,图象开口向上,故函数在区间(,a为减函数,在区间a,+)上为增函数,又由函数f(x)=x22ax,x1,+)是增函数,则a1故答案为:C12【答案】B【解析】解:问题等价于从6个位置中各选出2个位置填上相同的1,2,3,所以由分步计数原理有:C62C42C22=90个不同的六位数,故选:B【点评】本题考查了分步计数原理,关键是转化,属于中档题二、填空题13【答案】, 无【解析】【知识点】等比数列【试题解析】设该病人第n次服药后,药在体内的残留量为毫克,所以)=300,=350由,所以是一个等比数列,所以所以若该患者坚持长期服用此药无明显副作用。故答案为:, 无 14【答案】19【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为1915【答案】 【解析】解:原式=+lg10021=+221=,故选:【点评】本题考查了对数的运算性质,属于基础题16【答案】24 【解析】解:根据题意,可得出B=7530=45,在ABC中,根据正弦定理得:BC=24海里,则这时船与灯塔的距离为24海里故答案为:2417【答案】2