《模电基本元器》ppt课件

上传人:tian****1990 文档编号:72821456 上传时间:2019-01-24 格式:PPT 页数:80 大小:1.43MB
返回 下载 相关 举报
《模电基本元器》ppt课件_第1页
第1页 / 共80页
《模电基本元器》ppt课件_第2页
第2页 / 共80页
《模电基本元器》ppt课件_第3页
第3页 / 共80页
《模电基本元器》ppt课件_第4页
第4页 / 共80页
《模电基本元器》ppt课件_第5页
第5页 / 共80页
点击查看更多>>
资源描述

《《模电基本元器》ppt课件》由会员分享,可在线阅读,更多相关《《模电基本元器》ppt课件(80页珍藏版)》请在金锄头文库上搜索。

1、模拟电子技术,模拟电子技术,学习本门课程有什么作用?,1、掌握常用仪器的使用,比如示波器、信号发生器等。,2、能利用所给元器件制作电子产品,如中波广播收音机,3、为电路设计打好基础。比如参加全国电子设计大赛做准备,模电是很重要的取胜砝码。,4、为将来的进一步学习打下扎实的基础。,1)牢固掌握三基(基本概念、基本电路、基本分析方法); 2)逐步树立工程观点; *3)引入CAA、CAD技术运用pspice、multisim分析电子线路 4)重视实验,1.基本内容的处理原则:,学习的基本方法:,电子器件管掌握外特性 基本电路路课程重点 应用电路用广泛了解,原则:三者结合,管为路用,以路为主。,2.注

2、意点:,什么是模拟电路? 它与数字电路的区别是什么?,1.模拟电路是处理模拟信号的电子电路,如:放大电 路、滤波电路、电压/电流变换电路等。 2.数字电路是处理数字信号的电路。,那么,什么是模拟信号?什么又是数字信号呢?,项目一 半导体器件的认识,1.1 半导体的基本知识,1.2 半导体二极管,1.3 半导体三极管,1.1 半导体的基本知识,在物理学中。根据材料的导电能力,可以将他们划分导体、绝缘体和半导体。 典型的半导体是硅Si和锗Ge,它们都是4价元素。,硅原子,锗原子,硅和锗最外层轨道上的四个电子称为价电子。,1.1 半导体的基本知识,一、半导体的特点 1.热敏性 2.光敏性 3.掺杂性

3、 温度、光照、是否掺入杂质元素这三方面对半导体导电性能强弱影响很大。当半导体温度升高、光照加强、掺入杂质元素,其导电能力将大大增强。,本征半导体的共价键结构,束缚电子,在绝对温度T=0K时,所有的价电子都被共价键紧紧束缚在共价键中,不会成为自由电子,因此本征半导体的导电能力很弱,接近绝缘体。,一. 本征半导体,本征半导体化学成分纯净的半导体晶体。 制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”。,半导体基础知识,本征激发和两种载流子,1)本征激发,共价键 T=0K 无载流子 束缚价电子,部分价电子 自由电子 光、热作用 摆脱共价键 获得足够能量 空位称空穴,本征

4、激发:指半导体在加热或光照作用下,产生电子空穴对的现象。,这一现象称为本征激发,也称热激发。,当温度升高或受到光的照射时,束缚电子能量增高,有的电子可以挣脱原子核的束缚,而参与导电,成为自由电子。,自由电子,空穴,自由电子产生的同时,在其原来的共价键中就出现了一个空位,称为空穴。,可见本征激发同时产生电子空穴对。 外加能量越高(温度越高),产生的电子空穴对越多。,动画演示,与本征激发相反的现象复合,在一定温度下,本征激发和复合同时进行,达到动态平衡。电子空穴对的浓度一定。,常温300K时:,电子空穴对,半导体基础知识,2)载流子,电场作用 自由电子 定向运动 形成电子电流,电场作用 空穴 填补

5、空穴的价电子作定向运动 形成空穴电流,两种载流子:带负电荷的自由电子 电场 电子电流 极性相反 电流方向同 带正电荷的空穴 空穴电流 运动方向相反,自由电子 带负电荷 电子流,动画演示,总电流,空穴 带正电荷 空穴流,本征半导体的导电性取决于外加能量: 温度变化,导电性变化;光照变化,导电性变化。,导电机制,思考下:本征半导体基本不导电,那么如何让半导体导电呢?,二. 杂质半导体,在本征半导体中掺入某些微量杂质元素后的半导体称为杂质半导体。,1. N型半导体,在本征半导体中掺入五价杂质元素,例如磷,砷等,称为N型半导体。,N型半导体,多余电子,磷原子,硅原子,多数载流子自由电子,少数载流子 空

6、穴,施主离子,自由电子,电子空穴对,在本征半导体中掺入三价杂质元素,如硼、镓等。,空穴,硼原子,硅原子,多数载流子 空穴,少数载流子自由电子,受主离子,空穴,电子空穴对,2. P型半导体,杂质半导体的示意图,多子电子,少子空穴,多子空穴,少子电子,少子浓度与温度有关,多子浓度与温度无关,半导体基础知识,PN结 将P型半导体与N型半导体制作在同一块硅片上,在它们的交界面就形成PN结。,1. PN结的形成,漂移运动: 载流子在电场作用下的定向运动。,扩散运动: 由于浓度差引起的非平衡载流子的运动。,因多子浓度差,形成内电场,多子的扩散,空间电荷区,阻止多子扩散,促使少子漂移。,PN结合,空间电荷区

7、,多子扩散电流,少子漂移电流,耗尽层,三. PN结及其单向导电性,1 . PN结的形成,动画演示,动态平衡:,扩散电流 漂移电流,总电流0,2. PN结的单向导电性,(1) 加正向电压(正偏)电源正极接P区,负极接N区,外电场的方向与内电场方向相反。 外电场削弱内电场,耗尽层变窄,扩散运动漂移运动,多子扩散形成正向电流I F,(2) 加反向电压电源正极接N区,负极接P区,外电场的方向与内电场方向相同。 外电场加强内电场,耗尽层变宽,漂移运动扩散运动,少子漂移形成反向电流I R,在一定的温度下,由本征激发产生的少子浓度是一定的,故IR基本上与外加反压的大小无关,所以称为反向饱和电流。但IR与温度

8、有关。,PN结加正向电压时,具有较大的正向扩散电流,呈现低电阻, PN结导通; PN结加反向电压时,具有很小的反向漂移电流,呈现高电阻, PN结截止。 由此可以得出结论:PN结具有单向导电性。,动画演示1,动画演示2,3. PN结的伏安特性曲线及表达式,根据理论推导,PN结的伏安特性曲线如图,正偏,IF(多子扩散),IR(少子漂移),反偏,反向饱和电流,反向击穿电压,反向击穿,热击穿烧坏PN结,电击穿可逆,根据理论分析:,u 为PN结两端的电压降,i 为流过PN结的电流,IS 为反向饱和电流,UT =kT/q 称为温度的电压当量,其中k为玻耳兹曼常数 1.381023 q 为电子电荷量1.61

9、09 T 为热力学温度 对于室温(相当T=300 K) 则有UT=26 mV。,当 u0 uUT时,当 u|U T |时,1.2 半导体二极管,二极管 = PN结 + 管壳 + 引线,结构,符号,二极管按结构分三大类:,(1) 点接触型二极管,PN结面积小,结电容小, 用于检波和变频等高频电路。,(3) 平面型二极管,用于集成电路制造工艺中。 PN 结面积可大可小,用 于高频整流和开关电路中。,(2) 面接触型二极管,PN结面积大,用 于工频大电流整流电路。,半导体二极管的型号,国家标准对半导体器件型号的命名举例如下:,2AP9,半导体二极管练习题,例题1 求I=?,半导体二极管练习题,分别估

10、算开关断开和闭合时输出电压的值。,半导体二极管练习题,一 、半导体二极管的VA特性曲线,硅:0.5 V 锗: 0.1 V,(1) 正向特性,导通压降,(2) 反向特性,死区 电压,实验曲线,硅:0.7 V 锗:0.3V,二. 二极管的模型及近似分析计算,例:,二极管的模型,串联电压源模型,U D 二极管的导通压降。硅管 0.7V;锗管 0.3V。,理想二极管模型,正偏,反偏,二极管的近似分析计算,例:,串联电压源模型,测量值 9.32mA,相对误差,理想二极管模型,相对误差,0.7V,例:二极管构成的限幅电路如图所示,R1k,UREF=2V,输入信号为ui。 (1)若 ui为4V的直流信号,分

11、别采用理想二极管模型、理想二极管串联电压源模型计算电流I和输出电压uo,解:(1)采用理想模型分析。,采用理想二极管串联电压源模型分析。,(2)如果ui为幅度4V的交流三角波,波形如图(b)所示,分别采用理想二极管模型和理想二极管串联电压源模型分析电路并画出相应的输出电压波形。,解:采用理想二极管 模型分析。波形如图所示。,采用理想二极管串联电压源模型分析,波形如图所示。,三. 二极管的主要参数,(1) 最大整流电流IF,二极管长期连续工 作时,允许通过二 极管的最大整流 电流的平均值。,(2) 反向击穿电压UBR,二极管反向电流 急剧增加时对应的反向 电压值称为反向击穿 电压UBR。,(3)

12、 反向电流IR,在室温下,在规定的反向电压下的反向电流值。硅二极管的反向电流一般在纳安(nA)级;锗二极管在微安(A)级。,当稳压二极管工作在反向击穿状态下,工作电流IZ在Izmax和Izmin之间变化时,其两端电压近似为常数,稳定电压,四、稳压二极管,稳压二极管是应用在反向击穿区的特殊二极管,正向同二极管,反偏电压UZ 反向击穿, UZ ,稳压二极管的主要 参数,(1) 稳定电压UZ ,(2) 动态电阻rZ ,在规定的稳压管反向工作电流IZ下,所对应的反向工作电压。,rZ =U /I rZ愈小,反映稳压管的击穿特性愈陡。,(3) 最小稳定工作 电流IZmin,保证稳压管击穿所对应的电流,若I

13、ZIZmin则不能稳压。,(4) 最大稳定工作电流IZmax,超过Izmax稳压管会因功耗过大而烧坏。,1.3 半导体三极管,半导体三极管,也叫晶体三极管。由于工作时,多数载流子和少数载流子都参与运行,因此,还被称为双极型晶体管(Bipolar Junction Transistor,简称BJT)。 BJT是由两个PN结组成的。,一.BJT的结构,NPN型,PNP型,符号:,三极管的结构特点: (1)发射区的掺杂浓度集电区掺杂浓度。 (2)基区要制造得很薄且浓度很低。,二 BJT的内部工作原理(NPN管),三极管在工作时要加上适当的直流偏置电压。,若在放大工作状态: 发射结正偏:,+ UCE

14、, UBE , UCB ,集电结反偏:,由VBB保证,由VCC、 VBB保证,UCB=UCE - UBE, 0,(1)因为发射结正偏,所以发射区向基区注入电子 ,形成了扩散电流IEN 。同时从基区向发射区也有空穴的扩散运动,形成的电流为IEP。但其数量小,可忽略。 所以发射极电流I E I EN 。,(2)发射区的电子注入基区后,变成了少数载流子。少部分遇到的空穴复合掉,形成IBN。所以基极电流I B I BN 。大部分到达了集电区的边缘。,1BJT内部的载流子传输过程,(3)因为集电结反偏,收集扩散到集电区边缘的电子,形成电流ICN 。,另外,集电结区的少子形成漂移电流ICBO。,2电流分配

15、关系,三个电极上的电流关系:,IE =IC+IB,定义:,(1)IC与I E之间的关系:,所以:,其值的大小约为0.90.99。,(2)IC与I B之间的关系:,联立以下两式:,得:,所以:,得:,令:,三. BJT的特性曲线(共发射极接法),(1) 输入特性曲线 iB=f(uBE) uCE=const,(1)uCE=0V时,相当于两个PN结并联。,(3)uCE 1V再增加时,曲线右移很不明显。,(2)当uCE=1V时, 集电结已进入反偏状态,开始收集电子,所以基区复合减少, 在同一uBE 电压下,iB 减小。特性曲线将向右稍微移动一些。,(2)输出特性曲线 iC=f(uCE) iB=const,现以iB=60uA一条加以说明。,(1)当uCE=0 V时,因集电极无收集作用,iC=0。,(2) uCE Ic 。,(3) 当uCE 1V后,收集电子的能力足够强。这时,发射到基区的电子都被集电极收集,形成iC。所以uCE再增加,iC基本保持不变。,同理,可作出iB=其他值的曲线。,输出特性曲线可以分为三个区域:,饱和区iC受uCE显著控制的区域,该区域内uCE0.7 V。 此时发射结正偏,集电结也正偏。,截止区iC接近零的区域,相当iB=0的曲线的下方。 此时,发射结反偏,集电结反偏。,放大区

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号