超细粉体的表征方法、技术及其应用进展综述-2012-11-29解读

上传人:小** 文档编号:71022405 上传时间:2019-01-19 格式:DOC 页数:10 大小:37.50KB
返回 下载 相关 举报
超细粉体的表征方法、技术及其应用进展综述-2012-11-29解读_第1页
第1页 / 共10页
超细粉体的表征方法、技术及其应用进展综述-2012-11-29解读_第2页
第2页 / 共10页
超细粉体的表征方法、技术及其应用进展综述-2012-11-29解读_第3页
第3页 / 共10页
超细粉体的表征方法、技术及其应用进展综述-2012-11-29解读_第4页
第4页 / 共10页
超细粉体的表征方法、技术及其应用进展综述-2012-11-29解读_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《超细粉体的表征方法、技术及其应用进展综述-2012-11-29解读》由会员分享,可在线阅读,更多相关《超细粉体的表征方法、技术及其应用进展综述-2012-11-29解读(10页珍藏版)》请在金锄头文库上搜索。

1、超细粉体的表征方法、技术及其应用进展综述冯文超1,2,李军1,21昆明理工大学化工学院 2云南瑞升烟草技术(集团)有限公司摘要:本文介绍了超细粉体的制备其表征方法及应用现状,对其应用前景进行了展望。关键词:超细粉体;制备;表征;应用Representation methods,process technology and application in progress of ultrafine powderWenchao Feng1,2,Jun Li1,21 Faculty of Chemical Engineering of KunMing University of Science and

2、 Technology 2 YunNan Reascend Tobacco technology (group)Co.,LTDAbstract: This paper introduces the process of ultrafine powder and characterization meth-ods.Summarizes the present situation of the application of ultrafine powder from material,biological medicine,Chinese medicine and chemical industr

3、y and so on.And its applicationin future is prospected.Key words: ultrafine powder;characterization;process;application0前言超细粉体(又称超微粉体),一般是指物质粒径在10m以下,并具有微粉学特征的粉体物质。通常又分微米粉体、亚微米粉体及纳米粉体。粒径大于lm的粉体称为微米粉体,粒径处于0.1-lm之间的粉体称为亚微米粉体,粒径处于0.001-0.1m之间的粉体称为纳米粉体。随着材料物质的超细化,其表面分子排列及电子分布结构均发生变化,产生了奇特的表面效应、小尺寸效应、量子效

4、应和宏观量子隧道效应1。从文献调研可以发现,国外对超微粉体技术非常重视,许多国家先后建立了粉体研究机构。在我国从八、九十年代开始才逐步被越来越多研究部门和行业所重视2。随着粉体技术的不断发展,超细粉体材料在相关传统行业中的应用日益广泛,市场前景十分广阔。超细粉体材料由于颗粒尺寸的微细化,使其许多物理、化学性能产生了特殊变化,人们将这些性能应用在化工、轻工、冶金、电子、高技术陶瓷、复合材料、核技术、生物医学以及国防尖端技术等领域,大大推进了这些领域的发展3。1超细粉的制备技术现状1.1 制备方法超微粉体制备时根据粉碎力的原理不同,可分为干法粉碎和湿法粉碎4。干法有气流式、高频振动式、旋转球(棒)

5、磨式、锤击式和自磨式等几种形式;气流式是利用气体通过压力喷嘴的喷射产生剧烈的冲击、碰撞和摩擦等作用力实现对物料的粉碎。高频振动式是利用球或棒形磨介的高频振动产生冲击、摩擦和时切等作用力实现对物料的粉碎。旋转球磨式是利用球或棒形磨介在水平回转时产生冲击摩擦等作用力实现对物料的粉碎。湿法粉碎主要是胶体磨和均质机。胶体磨是通过转子的旋转,产生急剧的速度梯度。使物料受到强烈的剪切、摩擦和湍流扰动来粉碎物料。均质机是利用急剧的速度梯度产生强烈的剪切力,使液滴或颗粒发生变性和破裂以达到微粒化的目的。其中,超微粉碎时采用气流粉碎时,在粉碎过程不会产生局部过热现象,甚至可在低温状态下进行,粉碎瞬时即可完成,因

6、而能最大限度地保留粉体的生物活性成分,有利于制成所需的高质量产品2。1.2 超微粉制备设备概述超细粉体制备方法从物质的状态分有固相法、液相法和气相法。固相法主要有机械粉碎法、超声波粉碎法、热分解法、爆炸法等。液相法主要有沉淀法、醇盐法、羰基法、喷雾热干燥法、冷冻干燥法、电解法、化学凝聚法等。气相法主要有气相反应法、等离子体法、高温等离子体法、蒸发法、化学气相沉积法等。这些方法有些尚不成熟,有些难于实用化和工业化,目前在工业上应用较多的是机械粉碎法和液相化学沉淀法及气相反应法等方法。液相法的优点是所制备的超细粉体粒径小、粒度分布窄、粒形好和纯度高等,缺点是产量低、成本高和工艺复杂等。 该方法仅限

7、于制备某些特殊的功能材料, 如超细金红石型二氧化钛粉体、超细磁性氧化铁粉等。 机械粉碎法的优点是产量大、成本低和工艺简单等, 且在粉碎过程中产生机械化学效应使粉体活性提高;缺点是产品的纯度、细度和形貌均不及化学法制备的超细粉体。该法适应于大批量工业生产,如矿产品深加工等5。超细粉体的制备方法可按制备原理分为化学合成和物理粉碎。化学合成法生产工艺复杂,导致加工成本高,产量低,因此应用范围受限6。物理粉碎法成本低、产量大, 是目前制备超微粉体的主要手段, 现已大规模应用于工业生产。物理粉碎超微粉碎可分为干法粉碎和湿法粉碎, 根据粉碎过程中产生粉碎力的原理不同, 干法粉碎有气流式、高频振动式、旋转球

8、(棒)磨式、锤击式和自磨式等几种形式;湿法粉碎主要是胶体磨和均质机。气流式原理是利用气体通过压力喷嘴的喷射产生剧烈的冲击、碰撞和摩擦等作用力实现对物料的粉碎。高频振动式原理是利用球或棒形磨介的高频振动产生冲击、摩擦和剪切等作用力实现对物料的粉碎。旋转球磨式是利用球或棒形磨介在水平回转时产生冲击和摩擦等作用力实现对物料的粉碎。胶体磨是通过转子的旋转, 产生急剧的速度梯度。使物料受到强烈的剪切、摩擦和湍动骚扰来粉碎物料。均质机是利用急剧的速度梯度产生强烈的剪切力, 使液滴或颗粒发生变性和破裂以达到微粒化的目的4。2超细粉的表征方法2.1超细粉体的特性超细粉体是介于大块物质和院子或分子之间的中间物质

9、,是处于原子簇和宏观物体交接的区域。从微观和宏观的观点看。它即不是典型的微观系统,也不是典型的宏观系统,是介于二者之间的介观系统。由于超细粉体保持了原有物质的化学性质,而在热力学上又是不稳定的,所以对它们的研究与开发是了解微观世界如何过渡到宏观世界的关键。随着研究手段特别是电子显微镜的迅速发展,使得可以清楚的看到超细颗粒的大小和形状,对超细粉体的研究更加深入了。另外,它具有一系列新异的物理化学特征:(1) 体积效应当物质体积减小时, 将会出现两种情形: 一种是物质本身的性质不发生变化, 而只有那些与体积(尺寸)密切相关的性质发生变化,如半导体电子自由程变小,磁体的磁区变小等;另一种是物质本身的

10、性质也发生了变化。在这种情形下,原来的物性是山无数个原子或分子组成的集体属性, 而制成超细粉后,其微粒是有限个原子或分子结合的属性。例如金属超细粉粒子的电子结构与大块金属的迥然相异。在大块金属中,电子数量的细能级能形成连续的能带:而在金属超细粉粒子中, 电子数量有限,不能形成连续的能带,而是转化成各自分立的能级。一般半径小于10nm的金属超细粉粒子,在低温下应能观察到这种能级分立现象7。(2) 表面与界面效应超细粉体颗粒尺寸小,表面积大,位于表面的原子占相当大的比例。随着粒径减小,表面积急剧变大,引起表面原子数迅速增加。例如,粒径为10nm时,比表面积为90m2/g;粒径为5nm时,比表面积为

11、180m2/g:粒径小到2nm时,比表面积猛增到450m2/g。这样高的比表面,使处于表面的原子数越来越多,大大增强了粒子的活性。无机材料的纳米粒子暴露在大气中会吸附气体,并与气体进行反应。粒子表面活性高的原因在于它缺少近邻配位的表面原子,极不稳定,很容易与其它原子结合。这种表面原子的活性不但引起纳米粒子表面原子结构的变化,同时也引起表面电子自旋构像和电子能谱的变化8,9。(3)量子尺寸效应宏观物体包含无限个原子,即大粒子或宏观物体的能级间距几乎为零;而纳米微粒包含的原子数有限,N(104左右)值很小,导致能级间距发生分裂。块状金属的电子内能谱为准连续能带,而当能级间距大于热能、磁能、静磁能、

12、静电能、光子能量或超导的凝聚态能时,必须考虑量子效应,这就导致纳米微粒磁、光、声、热、电以及超导电性与宏观性的显著不同,称为量子尺寸效应。2.2 超细粉的表征方法及相关标准超细粉体表征主要包括以下几个方面:超细粉体的粒度分析(粒径、粒度分布),超细粉体的化学成分,形貌/结构分析(形状、表面、晶体结构等)等。超细粉体的测试技术有以下几种:(1)定性分析。对粉体组成的定性分析,包括材料是由哪些元素组成、每种元素含量。(2)颗粒分析。对粉体颗粒的分析包括颗粒形状、粒度、粒分布、颗粒结晶结构等。(3)结构分析。对粉体结构分析包括晶态结构、物相组成、组分之间的界面、物相形态等。 (4)性能分析。物理性能

13、分析包括纳米材料电、磁、声、光和其他新性能的分析,化学性能分析包括化学反应性、反应能力、在气体和其他介质中的化学性质等。2.2.1粒度的测试方法及仪器粉体颗粒大小称粒度。由于颗粒形状通常很复杂难以用一个尺度来表示,所以常用等效度的概念不同原理的粒度仪器依据不同颗粒的特性做等效对比。目前粒度分析主要有几种典型的方法分别为:高速离心沉降法、激光粒度分析法和电超声粒度分析法。常用于测量纳米颗粒的方法有以下几种。 (1)电镜观察一次颗粒的粒度分析主要采用电镜观测法,可以采用扫描电镜(SEM)和透射电镜(TEM)两种方式进行观测。可以直接观测颗粒的大小和形状,但又可能有统计误差。由于电镜法是对样品局部区

14、域的观测,所以在进行粒度分布分析时需要多幅照片的观测,通过软件分析得到统计的粒度分布。电镜法得到的一次粒度分布结构一般很难代表实际样品颗粒的分布状态,对一些强电子束轰击下不稳定甚至分解的超微粉体样品很难得到准确的结构,因此,电镜法一次颗粒检测结果通常作为其他分析方法的对比。(2) 激光粒度分析 目前,在颗粒粒度测量仪器中,激光衍射式粒度测量仪得到广泛应用。其特点是测量精度高、测量速度快、重复性好、可测粒径范围广、可进行非接触测量等,可用于测量超微粉体的粒径等。还可以结合BET法测定超微粉体的比表面积和团聚颗粒的尺寸及团聚度等,并进行对比、分析。 激光粒度分析原理:激光是一种电磁波,它可以绕过障

15、碍物,并形成新的光场分布,称为衍射现象。例如,平行激光束照在直径为D的球形颗粒上,在颗粒后得到一个圆斑,称为Airy斑,Airy斑直径d2.44f/D ,为激光波长,f为透镜焦距。由此公式计算颗粒大小D 。 (3) 沉降法 沉降法是通过颗粒在液体中沉降速度来测量粒度分布的方法。主要有重力沉降式和离心沉降式两种光透沉降粒度分析方式,适合纳米颗粒的分析主要是离心沉降式分析方法。 颗粒在分散介质中,会由于重力或离心力的作用发生沉降,其沉降速度与颗粒大小和质量有关,颗粒大的沉降速度快,颗粒小的沉降速度慢,在介质中形成一种分布。颗粒的沉降速度与颗粒粒径之间的关系服从Stokes定律,即在一定条件下颗粒在

16、液体中的沉降速度与粒径的平方成正比,与液体的粘度成反比。沉降式粒度仪所测的粒径也是一种等效粒径,叫做Stokes直径。 (4) 电超声粒度分析 电超声粒度分析是最新出现的粒度分析方法,当声波在样品内部传导时,仪器能在一个宽范围超声波频率内分析声波的衰减值,通过测得的声波衰减谱计算出衰减值与粒度的关系。分析中需要粒子和液体的密度、液体的粘度、粒子的质量分数的参数,对乳液和胶体中柔性粒子还需要粒子的热膨胀参数。此方法的优点:可测量高浓度分散体系和乳液的特性参数(包括粒径、电位势等),不需要稀释,避免了激光分析法不能分析高浓度分散体系粒度的缺陷,且精度高,粒度分析范围更广。 (5) 库尔特粒度仪 库尔特粒度仪也称库尔特计数器,可以测量悬浮液中颗

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 商业/管理/HR > 管理学资料

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号