《高等数学第十章》ppt课件

上传人:tia****nde 文档编号:70452459 上传时间:2019-01-17 格式:PPT 页数:21 大小:369.01KB
返回 下载 相关 举报
《高等数学第十章》ppt课件_第1页
第1页 / 共21页
《高等数学第十章》ppt课件_第2页
第2页 / 共21页
《高等数学第十章》ppt课件_第3页
第3页 / 共21页
《高等数学第十章》ppt课件_第4页
第4页 / 共21页
《高等数学第十章》ppt课件_第5页
第5页 / 共21页
点击查看更多>>
资源描述

《《高等数学第十章》ppt课件》由会员分享,可在线阅读,更多相关《《高等数学第十章》ppt课件(21页珍藏版)》请在金锄头文库上搜索。

1、一、对坐标的曲面积分的概念与性质,二、对坐标的曲面积分的计算法,三、两类曲面积分之间的联系,10.5 对坐标的曲面积分,当cos0时 n所指的一侧是上侧 当cos0时 n所指的一侧是下侧,一、对坐标的曲面积分的概念与性质,有向曲面 通常我们遇到的曲面都是双侧的 例如 由方程zz(x y)表示的曲面分为上侧与下侧,设n(cos cos cos)为曲面上的法向量,当cos0时 n所指的一侧是上侧 当cos0时 n所指的一侧是下侧,一、对坐标的曲面积分的概念与性质,有向曲面 通常我们遇到的曲面都是双侧的 例如 由方程zz(x y)表示的曲面分为上侧与下侧,设n(cos cos cos)为曲面上的法向

2、量,类似地 如果曲面的方程为yy(z x) 则曲面分为左侧与右侧 在曲面的右侧cos0 在曲面的左侧cos0 如果曲面的方程为xx(y z) 则曲面分为前侧与后侧 在曲面的前侧cos0 在曲面的后侧cos0,闭曲面有内侧与外侧之分,曲面在坐标面上的投影,在有向曲面上取一小块曲面S 用()xy表示S在xOy面上的投影区域的面积 假定S上各点处的法向量与z轴的夹角的余弦cos有相同的符号(即cos都是正的或都是负的) 我们规定S在xOy面上的投影(S)xy为,类似地可以定义S在yOz面及在zOx面上的投影(S)yz及(S)zx,提示,通过Si流向指定侧的流量近似为 viniSi ,流向曲面一侧的流

3、量,设稳定流动的不可压缩流体的速度场由 v(x y z)(P(x y z) Q(x y z) R(x y z) 给出 是速度场中的一片有向曲面 函数v(x y z)在上连续 求在单位时间内流向指定侧的流体的质量 即流量,把曲面分成n小块 S1 S2 Sn(Si也代表曲面面积),在Si上任取一点(i i i ),通过流向指定侧的流量近似为,流向曲面一侧的流量,设稳定流动的不可压缩流体的速度场由 v(x y z)(P(x y z) Q(x y z) R(x y z) 给出 是速度场中的一片有向曲面 函数v(x y z)在上连续 求在单位时间内流向指定侧的流体的质量 即流量,把曲面分成n小块 S1

4、S2 Sn(Si也代表曲面面积),在Si上任取一点(i i i ),通过流向指定侧的流量近似为,在上述和中 令各小曲面直径中的最大值0 就得到流量的精确值,对坐标的曲面积分的定义,设为光滑的有向曲面 函数R(x y z)在上有界 把任意分成n块小曲面 S1 S2 Sn(Si也代表曲面面积) Si在xOy面上的投影为(Si)xy (i, i, i )是Si上任意取定的一点 如果当各小块曲面的直径的最大值0时 极限,总存在 则称此极限为函数R(x y z)在有向曲面上对坐标x、,类似地 可定义对坐标y、z的曲面积分和对坐标z、x的曲面积分,对坐标的曲面积分的定义,函数R(x y z)在有向曲面上对

5、坐标x、y的曲面积分,对坐标的曲面积分的定义,函数R(x y z)在有向曲面上对坐标x、y的曲面积分,函数P(x y z)在有向曲面上对坐标y、z的曲面积分,函数Q(x y z)在有向曲面上对坐标z、x的曲面积分,上述曲面积分也称为第二类曲面积分 其中 P、Q、R叫做被积函数 叫做积分曲面,对坐标的曲面积分的简写形式,在应用上出现较多的是,为简便起见 这种合起来的形式简记为,说明 如果是分片光滑的有向曲面 我们规定函数在上对坐标的曲面积分等于函数在各片光滑曲面上对坐标的曲面积分之和,对坐标的曲面积分的性质,对坐标的曲面积分具有与对坐标的曲线积分类似的一些性质,(1)如果把S分成S1和S2 则,

6、(2)设S是有向曲面 S表示与S取相反侧的有向曲面 则,二、对坐标的曲面积分的计算法,讨论 如何把其它两个对坐标的曲面积分化为二重积分?,设积分曲面由方程zz(x y)给出的 在xOy面上的投影区域为Dxy 函数zz(x y)在Dxy上具有一阶连续偏导数 被积函数R(x y z)在上连续 则有,其中当取上侧时 积分前取“” 当取下侧时 积分前取“”,应注意的问题:,(3)曲面S取哪一侧.,(2)向哪个坐标面投影;,(1)曲面S用什么方程表示;,(4)积分前取什么符号.,把的上下面分别记为1和2 前后面分别记为3和4 左右面分别记为5和6,解,除3、4外 其余四片曲面在yOz 面上的投影为零 因

7、此,方体的整个表面的外侧 (x y z)|0xa 0yb 0zc,把的上下面分别记为1和2 前后面分别记为3和4 左右面分别记为5和6,解,除3、4外 其余四片曲面在yOz 面上的投影为零 因此,a2bc,类似地可得,于是所求曲面积分为(abc)abc,方体的整个表面的外侧 (x y z)|0xa 0yb 0zc,把有向曲面分成上下两部分,解,1和2在xOy面上的投影区域都是 Dxy x2y21(x0 y0),外侧在x0 y0的部分,三、两类曲面积分之间的联系,设cosa、cosb、cosg是有向曲面上点(x y z)处的法向量的方向余弦 则,综合起来有,三、两类曲面积分之间的联系,设cosa

8、、cosb、cosg是有向曲面上点(x y z)处的法向量的方向余弦 则,两类曲面积分之间的联系也可写成如下向量的形式,其中A(P Q R) n(cos cos cos)是有向曲面上点(x y z)处的单位法向量 dSndS(dydz dzdx dxdy)称为有向曲面元 An为向量A在向量n上的投影,提示:,提示,曲面上向下的法向量为(zx zy 1)(x y 1) 所以,解,由两类曲面积分之间的关系 可得,提示,介于平面,z,=,0,及,z,=,2,之间的部分的下侧,.,解,由两类曲面积分之间的关系 可得,介于平面,z,=,0,及,z,=,2,之间的部分的下侧,.,解,由两类曲面积分之间的关系 可得,1、物理意义,2、计算时应注意以下两点,小结,

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号