成都理工大学高数下重修ppt2阶线性微分方程

上传人:tia****nde 文档编号:69160956 上传时间:2019-01-12 格式:PPT 页数:44 大小:1.26MB
返回 下载 相关 举报
成都理工大学高数下重修ppt2阶线性微分方程_第1页
第1页 / 共44页
成都理工大学高数下重修ppt2阶线性微分方程_第2页
第2页 / 共44页
成都理工大学高数下重修ppt2阶线性微分方程_第3页
第3页 / 共44页
成都理工大学高数下重修ppt2阶线性微分方程_第4页
第4页 / 共44页
成都理工大学高数下重修ppt2阶线性微分方程_第5页
第5页 / 共44页
点击查看更多>>
资源描述

《成都理工大学高数下重修ppt2阶线性微分方程》由会员分享,可在线阅读,更多相关《成都理工大学高数下重修ppt2阶线性微分方程(44页珍藏版)》请在金锄头文库上搜索。

1、,高阶线性微分方程,线性齐次方程解的结构,线性非齐次方程解的结构,n 阶线性微分方程的一般形式为,(二阶线性微分方程),时, 称为非齐次方程 ;,时, 称为齐次方程.,证毕,一、线性齐次方程解的结构,是二阶线性齐次方程,的两个解,也是该方程的解.,证:,代入方程左边, 得,(叠加原理),定理1.,说明:,不一定是所给二阶方程的通解.,例如,是某二阶齐次方程的解,也是齐次方程的解,并不是通解,但是,则,为解决通解的判别问题,下面引入函数的线性相关与,线性无关概念.,定义:,是定义在区间 I 上的,n 个函数,使得,则称这 n个函数在 I 上线性相关,否则称为线性无关.,例如,,在( , )上都有

2、,故它们在任何区间 I 上都线性相关;,又如,,若在某区间 I 上,则根据二次多项式至多只有两个零点 ,必需全为 0 ,可见,在任何区间 I 上都 线性无关.,若存在不全为 0 的常数,两个函数在区间 I 上线性相关与线性无关的充要条件:,线性相关,存在不全为 0 的,使,线性无关,常数,思考:,中有一个恒为 0, 则,必线性,相关,(证明略),线性无关,定理 2.,是二阶线性齐次方程的两个线,性无关特解,数) 是该方程的通解.,例如, 方程,有特解,且,常数,故方程的通解为,推论.,是 n 阶齐次方程,的 n 个线性无关解,则方程的通解为,则,二、线性非齐次方程解的结构,是二阶非齐次方程,的

3、一个特解,Y (x) 是相应齐次方程的通解,定理 3.,则,是非齐次方程的通解 .,证: 将,代入方程左端, 得,是非齐次方程的解,又Y 中含有,两个独立任意常数,例如, 方程,有特解,对应齐次方程,有通解,因此该方程的通解为,证毕,因而 也是通解 .,定理 4.,分别是方程,的特解,是方程,的特解. (非齐次方程之解的叠加原理),定理3, 定理4 均可推广到 n 阶线性非齐次方程.,定理 5.,是对应齐次方程的 n 个线性,无关特解,给定 n 阶非齐次线性方程,是非齐次方程的特解,则非齐次方程,的通解为,齐次方程通解,非齐次方程特解,例4.,已知微分方程,个解,求此方程满足初始条件,的特解

4、.,解:,是对应齐次方程的解,且,常数,因而线性无关,故原方程通解为,代入初始条件,故所求特解为,有三,常系数,第七节,齐次线性微分方程,基本思路:,求解常系数线性齐次微分方程,求特征方程(代数方程)之根,转化,二阶常系数齐次线性微分方程:,和它的导数只差常数因子,代入得,称为微分方程的特征方程,1. 当,时, 有两个相异实根,方程有两个线性无关的特解:,因此方程的通解为,( r 为待定常数 ),所以令的解为,则微分,其根称为特征根.,特征方程,2. 当,时, 特征方程有两个相等实根,则微分方程有一个特解,设另一特解,( u (x) 待定),代入方程得:,是特征方程的重根,取 u = x ,

5、则得,因此原方程的通解为,特征方程,3. 当,时, 特征方程有一对共轭复根,这时原方程有两个复数解:,利用解的叠加原理 , 得原方程的线性无关特解:,因此原方程的通解为,小结:,特征方程:,实根,以上结论可推广到高阶常系数线性微分方程 .,若特征方程含 k 重复根,若特征方程含 k 重实根 r , 则其通解中必含对应项,则其通解中必含,对应项,特征方程:,推广:,例1.,的通解.,解: 特征方程,特征根:,因此原方程的通解为,例2. 求解初值问题,解: 特征方程,有重根,因此原方程的通解为,利用初始条件得,于是所求初值问题的解为,例4.,的通解.,解: 特征方程,特征根:,因此原方程通解为,例

6、5.,解: 特征方程:,特征根 :,原方程通解:,(不难看出, 原方程有特解,例6.,解: 特征方程:,即,其根为,方程通解 :,例7.,解: 特征方程:,特征根为,则方程通解 :,例题,为特解的 4 阶常系数线性齐次微分方程,并求其通解 .,解: 根据给定的特解知特征方程有根 :,因此特征方程为,即,故所求方程为,其通解为,常系数非齐次线性微分方程,第八节,一、,二、,二阶常系数线性非齐次微分方程 :,根据解的结构定理 , 其通解为,求特解的方法,根据 f (x) 的特殊形式 ,的待定形式,代入原方程比较两端表达式以确定待定系数 ., 待定系数法,一、, 为实数 ,设特解为,其中 为待定多项

7、式 ,代入原方程 , 得,为 m 次多项式 .,(1) 若 不是特征方程的根,则取,从而得到特解,形式为,Q (x) 为 m 次待定系数多项式,(2) 若 是特征方程的单根 ,为m 次多项式,故特解形式为,(3) 若 是特征方程的重根 ,是 m 次多项式,故特解形式为,小结,对方程,此结论可推广到高阶常系数线性微分方程 .,即,即,当 是特征方程的 k 重根 时,可设,特解,例1.,的一个特解.,解: 本题,而特征方程为,不是特征方程的根 .,设所求特解为,代入方程 :,比较系数, 得,于是所求特解为,例2.,的通解.,解: 本题,特征方程为,其根为,对应齐次方程的通解为,设非齐次方程特解为,

8、比较系数, 得,因此特解为,代入方程得,所求通解为,例3. 求解定解问题,解: 本题,特征方程为,其根为,设非齐次方程特解为,代入方程得,故,故对应齐次方程通解为,原方程通解为,由初始条件得,于是所求解为,解得,二、,第二步 求出如下两个方程的特解,分析思路:,第一步将 f (x) 转化为,第三步 利用叠加原理求出原方程的特解,第四步 分析原方程特解的特点,第一步,利用欧拉公式将 f (x) 变形,第二步 求如下两方程的特解,是特征方程的 k 重根 ( k = 0, 1),故,等式两边取共轭 :,为方程 的特解 .,设,则 有,特解:,第三步 求原方程的特解,利用第二步的结果, 根据叠加原理,

9、 原方程有特解 :,原方程,均为 m 次多项式 .,第四步 分析,因,均为 m 次实,多项式 .,本质上为实函数 ,小 结:,对非齐次方程,则可设特解:,其中,为特征方程的 k 重根 ( k = 0, 1),上述结论也可推广到高阶方程的情形.,例4.,的一个特解 .,解: 本题,特征方程,故设特解为,不是特征方程的根,代入方程得,比较系数 , 得,于是求得一个特解,例5.,的通解.,解:,特征方程为,其根为,对应齐次方程的通解为,比较系数, 得,因此特解为,代入方程:,所求通解为,为特征方程的单根 ,因此设非齐次方程特解为,例6.,解: (1) 特征方程,有二重根,所以设非齐次方程特解为,(2

10、) 特征方程,有根,利用叠加原理 , 可设非齐次方程特解为,设下列高阶常系数线性非齐次方程的特解形式:,内容小结, 为特征方程的 k (0, 1, 2) 重根,则设特解为,为特征方程的 k (0, 1 )重根,则设特解为,3. 上述结论也可推广到高阶方程的情形.,思考与练习,时可设特解为,时可设特解为,提示:,1 . (填空) 设,2. 求微分方程,的通解 (其中,为实数 ) .,解: 特征方程,特征根:,对应齐次方程通解:,时,代入原方程得,故原方程通解为,时,代入原方程得,故原方程通解为,3. 已知二阶常微分方程,有特解,求微分方程的通解 .,解: 将特解代入方程得恒等式,比较系数得,故原方程为,对应齐次方程通解:,原方程通解为,

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号