盛骤概率与数理统计课件ch

上传人:san****019 文档编号:68317684 上传时间:2019-01-10 格式:PPS 页数:57 大小:814KB
返回 下载 相关 举报
盛骤概率与数理统计课件ch_第1页
第1页 / 共57页
盛骤概率与数理统计课件ch_第2页
第2页 / 共57页
盛骤概率与数理统计课件ch_第3页
第3页 / 共57页
盛骤概率与数理统计课件ch_第4页
第4页 / 共57页
盛骤概率与数理统计课件ch_第5页
第5页 / 共57页
点击查看更多>>
资源描述

《盛骤概率与数理统计课件ch》由会员分享,可在线阅读,更多相关《盛骤概率与数理统计课件ch(57页珍藏版)》请在金锄头文库上搜索。

1、概率论与数理统计,教材: 概率论与数理统计 (第三版)浙江大学 盛骤等 编 高等教育出版社,?,概率论是研究什么的?,随机现象:不确定性与统计规律性,概率论研究和揭示随机现象的统计规律性的科学,第一章 概率论的基本概念,随机试验 随机事件及其运算 概率的定义及其运算 条件概率 事件的独立性,1.1 随机试验(简称“试验”),随机试验的特点: 1.可在相同条件下重复进行; 2.试验可能结果不止一个,但能确定所有的可能结果; 3.一次试验之前无法确定具体是哪种结果出现。 随机试验可表为 E,E1: 抛一枚硬币,分别用“H” 和“T” 表示出正面和反面; E2: 将一枚硬币连抛三次,考虑正反面出现的

2、情况; E3:将一枚硬币连抛三次,考虑正面出现的次数; E4:掷一颗骰子,考虑可能出现的点数; E5: 记录某网站一分钟内受到的点击次数; E6:在一批灯泡中任取一只,测其寿命; E7:任选一人,记录他的身高和体重 。,随机试验的例子,1.2 样本空间、随机事件,(一) 样本空间 实验E的所有可能结果所组成的集合称为样本空间,记为S=e;试验的每一个结果或样本空间的元素称为一个样本点,记为e. 由一个样本点组成的单点集称为一个基本事件, 记为e.,例: 给出E1-E7的样本空间,(二)随机事件,定义 试验中可能出现或可能不出现的情况叫“随机事件”, 简称“事件”.记作A、B、C等. 任何事件均

3、可表示为样本空间的某个子集. 称事件A发生当且仅当试验的结果是子集A中的元素 两个特殊事件: 必然事件S 、不可能事件.,例如 对于试验E2 ,以下A 、 B、C即为三个随机事件: A“至少出一个正面” HHH, HHT, HTH, THH,HTT,THT,TTH; B=“两次出现同一面”=HHH,TTT C=“恰好出现一次正面”=HTT,THT,TTH 再如,试验E6中D“灯泡寿命超过1000小时” x:1000xT(小时)。 可见,可以用文字表示事件,也可以将事件表示为样本空间的子集,后者反映了事件的实质,且更便于今后计算概率. 还应注意,同一样本空间中,不同的事件之间有一定的关系,如试验

4、E2 ,当试验的结果是HHH时,可以说事件A和B同时发生了;但事件B和C在任何情况下均不可能同时发生。易见,事件之间的关系是由他们所包含的样本点所决定的,这种关系可以用集合之间的关系来描述。,1.包含关系 “ A发生必导致B发生”记为AB AB AB且BA.,(三)事件之间的关系,2.和事件:“事件A与B至少有一个发生”, 记作AB,n个事件A1, A2, An至少有 一个发生,记作,3.积事件 :A与B同时发生,记作 ABAB,n个事件A1, A2, An同时发生,记作 A1A2An,4.差事件 :AB称为A与B的差事件,表示事件A发生而B不发生.,思考:何时A-B=?何时A-B=A?,5.

5、互斥的事件 :AB ,6. 互逆的事件 AB , 且AB ,(四)事件的运算律,1、交换律:ABBA,ABBA 2、结合律:(AB)CA(BC), (AB)CA(BC) 3、分配律:(AB)C(AC)(BC), (AB)C(AC)(BC) 4、对偶(De Morgan)律:,例:甲、乙、丙三人各向目标射击一发子弹,以A、B、C分别表示甲、乙、丙命中目标,试用A、B、C的运算关系表示下列事件:,1.3 概率的定义及其运算,从直观上来看,事件A的概率是指事件A发生的可能性,?,P(A)应具有何种性质?,?,抛一枚硬币,币值面向上的概率为多少? 掷一颗骰子,出现6点的概率为多少? 出现单数点的概率为

6、多少? 向目标射击,命中目标的概率有多大?,若某实验E满足 1.有限性:样本空间Se1, e 2 , , e n ; 2.等可能性: P(e1)=P(e2)=P(en). 则称E为古典概型也叫等可能概型。,(一)古典概型与概率,设事件A中所含样本点个数为N(A) ,以N(S)记样本空间S中样本点总数,则有,P(A)具有如下性质:,(1) 0 P(A) 1; (2) P()1; P( )=0 (3) AB,则 P( A B ) P(A) P(B),古典概型中的概率:,例:有三个子女的家庭,设每个孩子是男是女的概率相等,则至少有一个男孩的概率是多少? 解:设A-至少有一个男孩,以H表示某个孩子是男

7、孩,N(S)=HHH,HHT,HTH,THH,HTT,TTH,THT,TTT,N(A)=HHH,HHT,HTH,THH,HTT,TTH,THT,例 (摸求问题)设合中有3个白球,2个红球,现从合中任抽2个球,求取到一红一白的概率。 解:设A-取到一红一白,答:取到一红一白的概率为3/5,一般地,设合中有N个球,其中有M个白球,现从中任抽n个球,则这n个球中恰有k个白球的概率是,例 (分求问题)将3个球随机的放入3个盒子中去,问:(1)每盒恰有一球的概率是多少?(2)空一盒的概率是多少?,解:设A:每盒恰有一球,B:空一盒,一般地,把n个球随机地分配到m个盒子中去(nm),则每盒至多有一球的概率

8、是:,例 (分组问题)30名学生中有3名运动员,将这30名学生平均分成3组,求:(1)每组有一名运动员的概率;(2)3名运动员集中在一个组的概率。 解:设A:每组有一名运动员;B: 3名运动员集中在一组,一般地,把n个球随机地分成m组(nm),要求第 i 组恰有ni个球(i=1,m),共有分法:,例(随机取数问题)从1到200这200个自然数中任取一个;(1)求取到的数能被6整除的概率;(2)求取到的数能被8整除的概率;(3)求取到的数既能被6整除也能被8整除的概率.,(1),(2),(3)的概率分别为:33/200,1/8,1/25,某人向目标射击,以A表示事件“命中目标”, P(A)=?,

9、?,定义 事件A在n次重复试验中出现nA次,则比值nA/n称为事件A在n次重复试验中出现的频率,记为fn(A). 即,(二) 频率与概率,历史上曾有人做过试验,试图证明抛掷匀质硬币时,出现正反面的机会均等。 实验者 n nH fn(H) De Morgan 2048 1061 0.5181 Buffon 4040 2048 0.5069 K. Pearson 12000 6019 0.5016 K. Pearson 24000 12012 0.5005,频率的性质: (1) 0 fn(A) 1; (2) fn(S)1; fn( )=0 (3) 可加性:若AB ,则 fn(AB) fn(A) f

10、n(B).,实践证明:当试验次数n增大时, fn(A) 逐渐 趋向一个稳定值。可将此稳定值记作P(A), 作为事件A的概率.,(三) 概率的公理化定义,注意到不论是对概率的直观理解,还是频率定义方式,作为事件的概率,都应具有前述三条基本性质,在数学上,我们就可以从这些性质出发,给出概率的公理化定义.,1.定义 若对随机试验E所对应的样本空间中的每一事件A,均赋予一实数P(A),集合函数P(A)满足条件: (1) 非负性: P(A) 0; (2) 规范性: P(S)1; (3) 可列可加性:设A1,A2,, 是一列两两互不相容的事件,即AiAj,(ij), i , j1, 2, , 有 P( A

11、1 A2 ) P(A1) P(A2)+. 则称P(A)为事件A的概率。,2.概率的性质 (1) 有限可加性:设A1,A2,An , 是n个两两互不相容的事件,即AiAj ,(ij), i , j1, 2, , n ,则有 P( A1 A2 An) P(A1) P(A2)+ P(An);,(3) 事件差: A、B是两个事件,则 P(A-B)=P(A)-P(AB),(2) 单调不减性:若事件AB,则 P(A)P(B),(4) 加法公式:对任意两事件A、B,有 P(AB)P(A)P(B)P(AB) 该公式可推广到任意n个事件A1,A2,An的情形; (5) 互补性:P(A)1 P(A); (6) 可

12、分性:对任意两事件A、B,有 P(A)P(AB)P(AB ) .,例 某市有甲,乙,丙三种报纸,订每种报纸的人数分别占全体市民人数的30%,其中有10%的人同时定甲,乙两种报纸.没有人同时订甲乙或乙丙报纸.求从该市任选一人,他至少订有一种报纸的概率.,解: 设A,B,C分别表示选到的人订了甲,乙,丙报,例 在110这10个自然数中任取一数,求 (1)取到的数能被2或3整除的概率, (2)取到的数即不能被2也不能被3整除的概率, (3)取到的数能被2整除而不能被3整除的概率。,解:设A取到的数能被2整除; 取到的数能被3整除,故,袋中有十只球,其中九只白球,一只红球,十人依次从袋中各取一球(不放

13、回),问 第一个人取得红球的概率是多少? 第二个人取得红球的概率是多少?,?,1.4 条件概率,若已知第一个人取到的是白球,则第二个人取到红球的概率是多少?,已知事件A发生的条件下,事件B发生的概率称为 A条件下B的条件概率,记作P(B|A),若已知第一个人取到的是红球,则第二个人取到红球的概率又是多少?,一、条件概率 例 设袋中有3个白球,2个红球,现从袋中任意抽取两次,每次取一个,取后不放回, (1)已知第一次取到红球,求第二次也取到红球的概率; (2)求第二次取到红球的概率 (3)求两次均取到红球的概率,设A第一次取到红球,B第二次取到红球,S=,A,B,A第一次取到红球,B第二次取到红

14、球,显然,若事件A、B是古典概型的样本空间S中的两个事件,其中A含有nA个样本点,AB含有nAB个样本点,则,称为事件A发生的条件下事件B发生的条件概率.,一般地,设A、B是S中的两个事件,则,?,“条件概率”是“概率”吗?,何时P(A|B)=P(A)? 何时P(A|B)P(A)? 何时P(A|B)P(A)?,概率定义 若对随机试验E所对应的样本空间S中的每一事件A,均赋予一实数P(A),集合函数P(A)满足条件: P(A) 0; P(S)1; (3) 设A1,A2,, 是一列两两互不相容的事件,即AiAj,(ij), i , j1, 2, , 有 P( A1 A2 ) P(A1) P(A2)

15、+. 则称P(A)为事件A的概率。,例 一盒中混有100只新 ,旧乒乓球,各有红、白两色,分 类如下表。从盒中随机取出一球,若取得的是一只红球,试求该红球是新球的概率。,设A-从盒中随机取到一只红球. B-从盒中随机取到一只新球.,A,B,二、乘法公式,设A、BS,P(A)0,则 P(AB)P(A)P(B|A). 称为事件A、B的概率乘法公式。,乘法公式还可推广到三个事件的情形: P(ABC)P(A)P(B|A)P(C|AB). 一般地,有下列公式: P(A1A2An)P(A1)P(A2|A1).P(An|A1An1).,例 盒中有3个红球,2个白球,每次从袋中任取一只,观察其颜色后放回,并再放入一只与所取之球颜色相同的球,若从合中连续取球4次,试求第1、2次取得白球、第3、4次取得红球的概率。,解:设Ai为第i次取球时取到白球,则,三、全概率公式与贝叶斯公式,例4.(p16)市场上有甲、乙、丙三家工厂生产的同一品牌产品,已知三家工厂的市场占有率分别为1/4、1/4、1/2,且三家工厂的次品率分别为 2

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号