第三章离子与配位聚合,聚合方法

上传人:飞*** 文档编号:6621496 上传时间:2017-08-08 格式:PPT 页数:53 大小:634.50KB
返回 下载 相关 举报
第三章离子与配位聚合,聚合方法_第1页
第1页 / 共53页
第三章离子与配位聚合,聚合方法_第2页
第2页 / 共53页
第三章离子与配位聚合,聚合方法_第3页
第3页 / 共53页
第三章离子与配位聚合,聚合方法_第4页
第4页 / 共53页
第三章离子与配位聚合,聚合方法_第5页
第5页 / 共53页
点击查看更多>>
资源描述

《第三章离子与配位聚合,聚合方法》由会员分享,可在线阅读,更多相关《第三章离子与配位聚合,聚合方法(53页珍藏版)》请在金锄头文库上搜索。

1、离 子 聚 合,离子聚合的理论研究开始于五十年代离子聚合有别于自由基聚合的特点:,根本区别在于聚合活性种不同 离子聚合的活性种是带电荷的离子:,碳阳离子碳阴离子,通常是,阳离子聚合,到目前为止,对阳离子聚合的认识还不很深入 原因:阳离子活性很高,极易发生各种副反应,很难获得高分子量的聚合物 碳阳离子易发生和碱性物质的结合、转移、异构化等副反应构成了阳离子聚合的特点引发过程十分复杂,至今未能完全确定 目前采用阳离子聚合并大规模工业化的产品只有丁基橡胶,1. 阳离子聚合单体,具有推电子基的烯类单体原则上可进行阳离子聚合,推电子基团使双键电子云密度增加,有利于阳离子活性种进攻碳阳离子形成后,推电子基

2、团的存在,使碳上电子云稀少的情况有所改变,体系能量有所降低,碳阳离子的稳定性增加,称为反离子,从两方面考虑:,引发剂生成阳离子,引发单体生成碳阳离子 电荷转移引发,即引发剂和单体先形成电荷转移络合物而后引发,2. 阳离子聚合引发体系及引发作用 阳离子聚合的引发剂都是亲电试剂,即电子接受体,阳离子聚合的引发方式:,质子酸引发 质子酸包括: H2SO4,H3PO4,HClO4, CF3COOH,CCl3COOH,酸要有足够的强度产生H,故弱酸不行酸根的亲核性不能太强,否则会与活性中心结合成共价键而终止,如,质子酸先电离产生H,然后与单体加成形成 引发活性中心 活性单体离子对,条件,HSO4 H2P

3、O4的亲核性稍差,可得到低聚体HClO4,CF3COOH,CCl3COOH的酸根较弱,可生成高聚物,氢卤酸的X亲核性太强,不能作为阳离子聚合引发剂,如HCl引发异丁烯,不同质子酸的酸根的亲核性不同,Lewis酸引发,Lewis酸包括: 金属卤化物: BF3 , AlCl3, SnCl4 , TiCl4, SbCl5, PCl5, ZnCl2 金属卤氧化物: POCl3,CrO2Cl,SOCl2,VOCl3,绝大部分Lewis酸都需要共(助)引发剂,作为质子或碳阳离子的供给体,各种金属卤化物,都是电子的接受体,称为Lewis酸从工业角度看,是阳离子聚合最重要的引发剂,析出质子的物质:H2O,RO

4、H,HX,RCOOH析出碳阳离子的物质:RX,RCOX,(RCO)2O,如:无水BF3不能引发无水异丁烯的聚合,加入痕量水,聚合反应立即发生:,共引发剂有两类:,引发剂-共引发剂络合物,引发剂和共引发剂的不同组合,其活性也不同 引发剂的活性与接受电子的能力, 即酸性的强弱有关 BF3 AlCl3 TiCl4 SnCl4 共引发剂的活性视引发剂不同而不同 如异丁烯聚合,BF3为引发剂,共引发剂的活性: 水 :乙酸 :甲醇 50 :1. 5 :1,对于析出碳阳离子的情况:,链引发 以引发剂Lewis酸(C)和共引发剂(RH)为例,阳离子聚合机理,链增长 单体不断插入到碳阳离子和反离子形成的离子对中

5、间进行链增长,增长活化能与引发活化能一样低,速率快增长活性中心为一离子对,结合的紧密程度对聚合速率和分子量有一定影响单体插入聚合,对链节构型有一定的控制能力,特点:,链转移和链终止 离子聚合的增长活性中心带有相同的电荷,不能双分子终止,只能发生链转移终止或单基终止 这一点与自由基聚合显著不同,阳离子聚合机理的特点: 快引发,快增长,易转移,难终止,阴离子聚合,具有吸电子取代基的烯类单体原则上可以进行阴离子聚合 能否聚合取决于两种因素,是否具有共轭体系 吸电子基团并具有共轭体系,能够进行阴离子聚合,如AN、MMA、硝基乙烯 吸电子基团并不具有共轭体系,则不能进行阴离子聚合,如VC、VAc与吸电子

6、能力有关 +e 值越大,吸电子能力越强,易进行阴离子聚合,1.阴离子聚合单体,2. 引发体系及引发作用,碱金属引发 Li、Na、K外层只有一个价电子,容易转移给单体或中间体,生成阴离子引发聚合,电子间接转移引发,活性中心可以是自由离子、离子对以及它们的缔合状态,单体自由基阴离子,由亲核试剂(碱类)提供,,电子间接转移引发 碱金属将电子转移给中间体,形成自由基阴离子,再将活性转移给单体,如萘钠在THF中引发St,双阴离子活性中心,THF,碱金属不溶于溶剂,属非均相体系,利用率低,(红色),(绿色),(红色),萘钠在极性溶剂中是均相体系,碱金属的利用率高,金属氨基化合物 是研究得最早的一类引发剂

7、主要有 NaNH2液氨、KNH2 液氨 体系,有机金属化合物引发,形成自由阴离子,其它亲核试剂 中性亲核试剂,如R3P、R3N、ROH、H2O等 都有未共用的电子对,在引发和增长过程中生成电荷分离的两性离子,只能引发非常活泼的单体,电荷分离的两性离子,不同引发剂对单体的引发情况见表5-6,阴离子聚合在适当条件下(体系非常纯净;单体为非极性共轭双烯),可以不发生链终止或链转移反应,活性链直到单体完全耗尽仍可保持聚合活性。 这种单体完全耗尽仍可保持聚合活性的聚合物链阴离子称为“ 活高分子”(Living Polymer),3. 阴离子聚合机理无终止聚合,活性聚合物,形成活性聚合物的原因,离子聚合无

8、双基终止反离子为金属离子,不能加成终止从活性链上脱除氢负离子H进行链转移困难,所需能量较高(主要原因)最终仍可脱H终止,可能发生下述反应:,氢化纳活性较大,可再度引发聚合,1, 3-二苯基烯丙基阴离子由于共轭效应,很稳定,无反应活性,烯丙基氢,在聚合末期,加入链转移剂(水、醇、酸、胺)可使活性聚合物终止 有目的的加入CO2、环氧乙烷、二异氰酸酯可获得指定端基聚合物,端羟基化反应,端羧基化反应,端胺基化反应,阴离子聚合的特点:快引发、慢增长、无终止,配 位 聚 合,1. 什么是配位聚合? 是指烯类单体的碳碳双键首先在过渡金属引发剂活性中心上进行配位、活化,随后单体分子相继插入过渡金属碳键中进行链

9、增长的过程。,未满22岁获得博士学位曾在Frankfort, Heideberg大学任教1936年任Halle大学化学系主任,后任校长1943年任Mak Planck研究院院长1946年兼任联邦德国化学会会长主要贡献是发明了Ziegler催化剂1963年荣获Nobel化学奖治学严谨,实验技巧娴熟,一生发表论文200余篇,Ziegler发现 :使用四氯化钛和三乙基铝,可在常压下得到PE(低压PE),这一发现具有划时代的重大意义,K. Ziegler,Ziegler (18981973)小传,意大利人,21岁获化学工程博士学位1938年任米兰工业大学教授,工业化学研究所所长50年代以前,从事甲醇、

10、甲醛、丁醛等应用化学研究,取得许多重大成果1952年, 在德 Frankford 参加Ziegler的报告会,被其研究工作深深打动1954年,发现丙烯聚合催化剂1963年,获Nobel化学奖,Natta (1903 1979)小传,G. Natta,Natta发现:将TiCl4 改为 TiCl3,用于丙烯的聚合,得到高分子量、高结晶度、高熔点的聚丙烯,Ziegler-Natta催化剂,1953年,Ziegler等从一次以Et3Al为催化剂从乙烯合成高级烯烃的失败实验出发,意外地发现以乙酰丙酮的锆盐和Et3Al催化时得到的是高分子量的乙烯聚合物,并在此基础上开发了的乙烯聚合催化剂TiCl4 -

11、AlEt3。 1954年Natta等把Ziegler催化剂中的主要组分TiCl4还原成TiCl3后与烷基铝复合成功地进行了丙烯聚合。,Ziegler-Natta催化剂在发现后仅2-3年便实现了工业化,并由此把高分子工业带入了一个崭新的时代。 乙烯的自由基聚合必须在高温高压下进行,由于较易向高分子的链转移,得到支化高分子,即LDPE。 Ziegler-Natta催化剂的乙烯的配位聚合则可在低(中)压条件下进行,不易向高分子链转移,得到的是线形高分子,分子链之间堆砌较紧密,密度大,常称高密度聚乙烯(HDPE)。,Zieler-Natta催化剂指的是由IVVIII族过渡金属卤化物与 I III族金属

12、元素的有机金属化合物所组成的一类催化剂。其通式可写为:,MtIV-VIIIX + MtI-IIIR,主催化剂,共催化剂,常用的主催化剂:TiCl4。 TiCl3,VCl3,VOCl3,ZrCl3等,其中以TiCl3最常用;共催化剂最有效的是一些金属离子半径小、带正电性的金属有机化合物,因为它们的配位能力强,易生成稳定的配位化合物。如Be,Mg,Al等金属的烷基化合物,其中以AlEt3和AlEt2Cl最常用。,聚合反应基元反应,(1)链引发:,(2)链增长:,链增长反应可表示如下,过渡金属,空位,环状过渡状态,链增长过程的本质是单体对增长链端络合物的插入反应,(3)链转移:,(i)向单体转移,(

13、ii)向金属有机物转移,(iii)向H2转移(实际生产中常加H2作为分子量调节剂),(iv)分子内转移,(4)链终止,(i)醇、羧酸、胺、水等含活泼氢的化合物能与活性中心反应,是之失活:,(ii)O2。CO2,CO,酮等也能导致链终止,因此单体、溶剂要严格纯化,聚合体系要严格排除空气:,聚合方法,本体聚合 溶液聚合 悬浮聚合 乳液聚合,自由基聚合方法,聚合方法概述,离子和配位聚合方法,逐步聚合方法,本体聚合溶液聚合悬浮聚合乳液聚合,溶液聚合本体聚合,熔融缩聚溶液缩聚界面缩聚固相缩聚,4,本体聚合,何谓本体聚合 不加其它介质,只有单体本身,在引发剂、热、光等作用下进行的聚合反应基本组分 单体 包

14、括气态、液态和固态单体 引发剂 一般为油溶性 助剂,色料增塑剂润滑剂,聚合场所:本体内,本体聚合的优缺点,解决办法 预聚 在反应釜中进行,转化率达1040,放出一部分聚合热,有一定粘度 后聚 在模板中聚合,逐步升温,使聚合完全,优点 产品纯净,不存在介质分离问题 可直接制得透明的板材、型材 聚合设备简单,可连续或间歇生产缺点 体系很粘稠,聚合热不易扩散,温度难控制 轻则造成局部过热,产品有气泡,分子量分布宽 重则温度失调,引起爆聚,溶液聚合,溶液聚合 是将单体和引发剂溶于适当溶剂这进行的聚合反应基本组分 单体 引发剂 溶剂聚合场所: 在溶液内溶液聚合的优缺点,优点,缺点,散热控温容易,可避免局

15、部过热体系粘度较低,能消除凝胶效应,溶剂回收麻烦,设备利用率低聚合速率慢分子量不高,自由基聚合:均相 与非均相离子与配位聚合:只能溶于有机溶剂中,工业上,溶液聚合多用于聚合物溶液直接使用的场合 如涂料、胶粘剂、浸渍液、合成纤维纺丝液,悬浮聚合,悬浮聚合 是将不溶于水的单体以小液滴状悬浮在水中进行的聚合,这是自由基聚合一种特有的聚合方法基本组分 单体 引发剂 水 悬浮剂,水溶性高分子物质,聚乙烯醇聚丙烯酸钠SMAA共聚物明胶纤维素类淀粉,碳酸盐硫酸盐滑石粉高岭土,是一类能将油溶性单体分散在水中形成稳定悬浮液的物质。,吸附在液滴表面,形成一层保护膜,吸附在液滴表面,起机械隔离作用,不溶于水的无机物,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 其它中学文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号