汽车可变技术论文

上传人:第*** 文档编号:65278488 上传时间:2018-12-31 格式:DOCX 页数:7 大小:26.69KB
返回 下载 相关 举报
汽车可变技术论文_第1页
第1页 / 共7页
汽车可变技术论文_第2页
第2页 / 共7页
汽车可变技术论文_第3页
第3页 / 共7页
汽车可变技术论文_第4页
第4页 / 共7页
汽车可变技术论文_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《汽车可变技术论文》由会员分享,可在线阅读,更多相关《汽车可变技术论文(7页珍藏版)》请在金锄头文库上搜索。

1、汽车可变技术论文MDSMDS是为克莱斯勒的HEMI发动机量身打造的多级可变排量控制系统,全称为MDS-Multi-Displacement System。所谓的MDS,实质上与其它的可变排量技术一样,都是依靠关闭相应的汽缸来达到节省能耗的目的。可变气门正时VVT(Variable Valve Timing)为了能更好的说清楚可变气门正时的原理,首先有必要简单解释一下发动机相关的几项工作原理。大家都知道,气门是由发动机的曲轴通过凸轮轴带动的,气门的配气正时取决于凸轮轴的转角。在普通的发动机上,进气门和排气门的开闭时间是固定不变的,这种固定不变的正时很难兼顾到发动机不同转速的工作需求,可变气门正时

2、就是解决这一矛盾的技术。 我们在简单回顾一下“气门叠加角”的概念在发动机运转的时候,我们需要让更多的新鲜空气进入到燃烧室,让废气能尽可能的排出燃烧室,最好的解决方法就是让进气门提前打开,让排气门推迟关闭。这样,在进气行程和排气行程之间,就会发生进气门和排气门同时打开的情况,这种进排气门之间的重叠被称为气门叠加角。当发动机处于不同转速时,气门叠加角的要求也是不同的。 没有任何一种固定的气门叠加角设置能让发动机在高地转速时都能完美输出的,如果没有可变气门正时技术,发动机只能根据其匹配车型的需求,选择最优化的固定的气门叠加角。例如,赛车的发动机一般都采用较大的气门叠加角,以有利于高转速时候的动力输出

3、。而普通的民用车则采用适中的气门叠加角,同时兼顾高速和低速是的动力输出,但在低转速和高转速时会损失很多动力。而可变气门正时技术,就是通过技术手段,实现气门叠加角的可变来解决这一矛盾。 采用了可变气门正时技术,发动机的功率和扭力输出将会更加线性,同时兼顾高低转速的动力输出。引擎的转速能够设计得更高,因而获得更多的功率输出。例如,尼桑的 2 升 Neo VVL 发动机比没有配备 VVT 的相同结构的发动机,可以提供超过 25的动力输出。 采用了可变气门正时技术,发动机在低转速时能增加扭力输出,大大增强驾驶的操纵灵活性。例如,菲亚特 Barchettas 1.8 VVT 发动机,能在 2000rpm

4、6000rpm 之间输出 90的扭力。 需要说明的是,发动机采用可变气门正时技术获得上述好处的同时,没有任何负面影响,换句话说,就是没有对于发动机的工作强度提出更高的要求。 VCMVCM的全称为Variable Cylinder Management,是本田公司研发的一种可变汽缸管理技术,它可通过关闭个别气缸的方法,使到3.5L V6引擎可在3、4、6缸之间变化,使得引擎排量也能在1.75-3.5L之间变化,从而大大节省燃油。 车辆起步、加速或爬坡等任何需要大功率输出的情况下,该发动机将会把全部6个气缸投入工作。在中速巡航和低发动机负荷工况下,系统仅将运转一个气缸组,即三个气缸。在中等加速、高

5、速巡航和缓坡行驶时,发动机将会用4个气缸来运转。借助三种工作模式,VCM系统能够细致地确定发动机的工作排量,使其随时与行车要求保持一致。由于系统会自动关闭非工作缸的进气门和排气门,所以可避免与进、排气相关的吸排损失,并进一步提高了燃油经济性。VCM系统综合实现了最高的性能和最高的燃油经济性-这两种特性在常规发动机上通常无法共存。 VCM通过VTEC系统关闭进、排气门,以中止特定气缸的工作,与此同时,由动力传动系控制模块切断这些气缸的燃油供给。在3缸工作模式下,后排气缸组被停止工作。在四缸工作模式下,前排气缸组的左侧和中间气缸正常工作,后排气缸组的右侧和中间气缸正常工作。非工作缸的火花塞会继续点

6、火,以尽量降低火花塞的温度损失,防止气缸重新投入工作时因不完全燃烧造成火花塞油污。该系统采用电子控制,并采用专用的一体式滑阀,这些滑阀与缸盖内的摇臂轴支架一样起着双重作用。根据系统电子控制装置发出的指令,滑阀会有选择地将油压导向特定气缸的摇臂。然后,该油压会推动同步活塞,实现摇臂的连接和断开。VCM系统对节气门开度、车速、发动机转速、自动变速箱档位选择及其它因素进行监测,以针对各种工作状态确定适宜的气缸启用方案。此外,该系统还会确定发动机机油压力是否适合VCM进行工作模式的切换,以及催化转化器的温度是否仍会保持在适当范围内。为了使气缸启用或停用时的过渡能够平稳进行,系统会调整点火正时、线控节气

7、门的开度,并相应地启用或解除变矩器锁定。最终,3缸、4缸和6缸工作模式间的过渡,会在驾驶员觉察不到的状态下完成。发动机变缸技术对于一般的发动机来讲,只要点火开关一经打开发动机就随即进入到工作状态,那么无论是车辆低速行驶还是怠速静止,发动机的所有气缸便会同时进入工作状态。但发动机要是能够在低速行驶或停等红灯时让其中几个气缸暂停工作,切断气门开启以停止吸气与供油,发动机就可以省下不必要的燃油耗费,达到节油的目的。这正是发动机变缸技术的由来,简单来说,变缸技术就是一种能够根据道路情况或者驾驶员驾驶状态对发动机气缸工作状态进行调节的一项节能技术,它通过对发动机内部机械构造的改变来发挥1+1大于2的效果

8、,从技术层面来讲,这项技术实现起来相对简单、成本也相对低廉。正因为它的低门槛与低成本,因此变缸技术并不是到现在才有的,实际上过去已经有大排量的6缸、8缸或是12缸发动机匹配过了,比如奔驰S600的V12发动机就使用了变缸技术,发动机可在6缸和12缸之间进行切换;而大家更为熟悉的广汽本田雅阁和歌诗图也拥有自己的VGM可变式汽缸管理系统 (Variable Cylinder Management) 。可变气门行程我们知道,发动机的气门行程是受凸轮轴转角长度控制的,在普通的发动机上,凸轮轴的转角长度固定,气门行程也是固定不变的。类似于不可变气门正时的发动机,这种气门行程固定不变的发动机,它采用的气门

9、行程设计也是根据发动机的需求设定,赛车发动机采用长行程设计,以获得高转速是强大的功率输出,但在低转速的时候会工作不稳定;普通民用车则采用兼顾高低转速的气门行程设计,但会在高低转速区域损失动力。而采用可变行程技术的发动机,气门行程能随发动机转速的改变而改变。在高转速时,采用长行程来提高进气效率,让发动机的呼吸更顺畅,在低速时,采用短行程,能产生更大的进气负压及更多的涡流,让空气和燃油充分混合,因而提高低转速时的扭力输出。 下面,我们就按照上文的分类,用实例来解释这些可变配气系统的工作原理及好处 。可变气门正时可变气门正时技术,在整个可变配气技术里,属于结构简单成本低的机构系统,它通过液压和齿轮传

10、动机构,根据发动机的需要动态调节气门正时。由于结构简单,增加的成本有限,这个技术现在已经配备在大多数主流发动机上。 可变气门正时不能改变气门开启持续时间,只能控制气门提前打开或推迟关闭的时刻。同时,它也不能像可变凸轮轴一样控制气门开启行程,所以它对提升发动机的性能所起的作用有限。不过这种技术是结构简单,成本低廉的可变配气技术,因为它只需要一套液压装置,就能调整凸轮轴相位,而不像其他系统那样,在每个气缸都需要布置一个液压机构。 可变气门正时的简单分类连续可变气门正时和不连续可变气门正时 简单的可变配气相位 VVT 只有两段或三段固定的相位角可供选择,通常是0度或30度中的一个。更高性能的可变配气

11、相位 VVT 系统能够连续可变相位角,根据转速的不同,在 0 度-30度之间线性调教配气相位。显而易见,连续可变气门正时系统更适合匹配各种转速,因而能有效提高发动机的输出性能,特别是发动机的输出平顺性。 进气可变气门正时和排气可变气门正时有一些设计,像 BMW 的双可变配气相位系统(Double Vanos system),它能同时改变进气凸轮轴和排气凸轮轴的相位角,从而获得与转速更匹配的气门叠加角,因此其拥有效率更高的配气效率。这就是为什么 BMW M3 3.2 发动机(升功率为 100 匹) 拥有比前一代仅配备了进气门可变相位系统的 M3 3.0 发动机(升功率为 95 匹)更高的性能。各

12、大厂商的VVT技术【本田VTEC】本田的VTEC技术,是VVT发展史上的里程碑。正是兼顾性能与成本的VTEC出现,才让VVT技术开始大行其道。本田VTEC目前已经发展到第三代i-VTEC(智能可变气门正时及升程电子控制系统),该系统由一个三段式的VTEC和VTC控制器组成。VTEC通过凸轮轴上的高低行程两组凸轮和驱动气门的两级摇臂机构来实现对气门正时和升程的控制,凸轮和摇臂共有三种组合,是一种阶段式的VVT系统。VTC能根据发动机转速和负荷,调整进排气正时的重叠角,让i-VTEC具有连续可变正时的性能。目前本田所有成型的i-VTEC引擎均为同时控制进排气门。本田自2002年开始在旗下所有车型中

13、全面使用i-VTEC,但需注意的是本田还有一种SOHC i-VTEC。SOHC i-VTEC以三段式的VTEC为基础,没有VTC(VTC只能用于DOHC),增加了一个省油模式。在省油模式下,节气门在低转速也保持全开,从而提升发动机的进气效率,达到省油的目的。国产的思域1.8L和雅阁2.0L用的都是这种SOHC i-VTEC。【宝马VANOS】宝马的Double VANOS+Valvetronic是目前唯一能做到连续可变气门正时和升程的系统。VANOS通过一个液压驱动的杯型齿轮,联接凸轮轴和链轮,通过杯型齿轮的动作提前或延迟凸轮轴的转动,从而实现连续可变气门正时。Double VANOS就是进排

14、气都有VANOS来控制。Valvetronic使用液压调整的摇臂来控制气门升程,不同于其他气门升程调节机构只是阶段式的,Valvetronic可以做到连续调节。Double VANOS+Valvetronic系统在功能上接近完美,结构也非常清晰,但对液压部件的要求非常高,因此成本一直居高不下。【丰田VVT-i】丰田最早在1992年的卡罗拉车型上使用了搭载VVT技术的4A-GE发动机,但只是气门正时二阶段可变的。1996年,丰田推出了VVT-i,并沿用至今。VVT-i的结构类似于宝马的VANOS,不同的是VANOS通过液压机械结构,而VVT-i通过电机提前或延迟凸轮轴的转动,控制精度没有VANO

15、S那么高。同样,双VVT-i就是进排气都有VVT-i。同是日本最具代表性的汽车厂商,丰田的自然吸气发动机始终不如本田,2001年他们决定反戈一击。新推出的塞利卡SS-II,使用编号为2ZZ-GE的1.8L发动机,该发动机采用VVTL-i技术,L既“Left”,表示该技术能对气门升程做出调节。有趣的是,VVTL-i的气门升程调节机构与本田的VTEC非常相似,也仅有两段调节。国内目前还没有使用VVTL-i技术的丰田车型。【保时捷VarioCam Plus】保时捷的VarioCam Plus结合了VTEC和VANOS的特点。在调节气门正时方面,采用了与VANOS近似的做法。但VarioCam Plu

16、s没有摇臂机构,而是直接用凸轮轴推动气门,采用与VTEC类似的高低行程两组凸轮,达成对气门升程两段调节的功能。保时捷的车比较稀少,所以VarioCam Plus在国内名气也不是那么大。据说VarioCam Plus的特性非常类似于早期的VTEC,在特定转速开启之后能给发动机性能带来质的飞跃。【通用DVVT】通用的“VVT”系统(加引号以示区别),是一套连续可变的VVT系统,技术含量较高。无论对于OHV或OHC形式的发动机都能匹配,是通用VVT系统的最神奇之处。通用在其一系列高性能V6发动机(HFV6)中运用了进排气连续可变气门正时和电子节气门技术,但是通用并没有对这项技术命名。此外HFV6系列发动机为序列式燃油直喷。通用新君威,科鲁兹搭载源自欧宝的ECOTEC引擎,技术含量还是很高的。【日产

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 解决方案

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号