电磁场与电磁波课后习题与答案三章习题解答

上传人:suns****4568 文档编号:62708343 上传时间:2018-12-22 格式:DOC 页数:19 大小:703.50KB
返回 下载 相关 举报
电磁场与电磁波课后习题与答案三章习题解答_第1页
第1页 / 共19页
电磁场与电磁波课后习题与答案三章习题解答_第2页
第2页 / 共19页
电磁场与电磁波课后习题与答案三章习题解答_第3页
第3页 / 共19页
电磁场与电磁波课后习题与答案三章习题解答_第4页
第4页 / 共19页
电磁场与电磁波课后习题与答案三章习题解答_第5页
第5页 / 共19页
点击查看更多>>
资源描述

《电磁场与电磁波课后习题与答案三章习题解答》由会员分享,可在线阅读,更多相关《电磁场与电磁波课后习题与答案三章习题解答(19页珍藏版)》请在金锄头文库上搜索。

1、三章习题解答3.1 真空中半径为的一个球面,球的两极点处分别设置点电荷和,试计算球赤道平面上电通密度的通量(如题3.1图所示)。赤道平面题3.1 图解 由点电荷和共同产生的电通密度为则球赤道平面上电通密度的通量3.2 1911年卢瑟福在实验中使用的是半径为的球体原子模型,其球体内均匀分布有总电荷量为的电子云,在球心有一正电荷(是原子序数,是质子电荷量),通过实验得到球体内的电通量密度表达式为,试证明之。解 位于球心的正电荷球体内产生的电通量密度为 原子内电子云的电荷体密度为 题3. 3图电子云在原子内产生的电通量密度则为 故原子内总的电通量密度为 3.3 电荷均匀分布于两圆柱面间的区域中,体密

2、度为, 两圆柱面半径分别为和,轴线相距为,如题3.3图所示。求空间各部分的电场。解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。但可把半径为的小圆柱面内看作同时具有体密度分别为的两种电荷分布,这样在半径为的整个圆柱体内具有体密度为的均匀电荷分布,而在半径为的整个圆柱体内则具有体密度为的均匀电荷分布,如题3.3图所示。空间任一点的电场是这两种电荷所产生的电场的叠加。在区域中,由高斯定律,可求得大、小圆柱中的正、负电荷在点产生的电场分别为 题3. 3图点处总的电场为 在且区域中,同理可求得大、小圆柱中的正、负电荷在点产生的电场分别为 点处总的电场为 在的空腔区域中,大、小圆柱中的正

3、、负电荷在点产生的电场分别为 点处总的电场为 3.4 半径为的球中充满密度的体电荷,已知电位移分布为 其中为常数,试求电荷密度。解:由,有 故在区域 在区域 3.5 一个半径为薄导体球壳内表面涂覆了一薄层绝缘膜,球内充满总电荷量为为的体电荷,球壳上又另充有电荷量。已知球内部的电场为,设球内介质为真空。计算:(1) 球内的电荷分布;(2)球壳外表面的电荷面密度。解 (1) 由高斯定律的微分形式可求得球内的电荷体密度为(2)球体内的总电量为 球内电荷不仅在球壳内表面上感应电荷,而且在球壳外表面上还要感应电荷,所以球壳外表面上的总电荷为2,故球壳外表面上的电荷面密度为 3.6 两个无限长的同轴圆柱半

4、径分别为和,圆柱表面分别带有密度为和的面电荷。(1)计算各处的电位移;(2)欲使区域内,则和应具有什么关系?解 (1)由高斯定理,当时,有 当时,有 ,则 当时,有 ,则 (2)令 ,则得到 3.7 计算在电场强度的电场中把带电量为的点电荷从点移到点时电场所做的功:(1)沿曲线;(2)沿连接该两点的直线。解 (1)(2)连接点到点直线方程为 即 故3.8 长度为的细导线带有均匀电荷,其电荷线密度为。(1)计算线电荷平分面上任意点的电位;(2)利用直接积分法计算线电荷平分面上任意点的电场,并用核对。解 (1)建立如题3.8图所示坐标系。根据电位的积分表达式,线电荷平分面上任意点的电位为题3.8图

5、 (2)根据对称性,可得两个对称线电荷元在点的电场为故长为的线电荷在点的电场为由求,有3.9 已知无限长均匀线电荷的电场,试用定义式求其电位函数。其中为电位参考点。解 由于是无限长的线电荷,不能将选为无穷远点。3.10 一点电荷位于,另一点电荷位于,求空间的零电位面。解 两个点电荷和在空间产生的电位令,则有 即 故得 由此可见,零电位面是一个以点为球心、为半径的球面。3.11 证明习题3.2的电位表达式为 解 位于球心的正电荷在原子外产生的电通量密度为 电子云在原子外产生的电通量密度则为 所以原子外的电场为零。故原子内电位为3.12 电场中有一半径为的圆柱体,已知柱内外的电位函数分别为 (1)

6、求圆柱内、外的电场强度; (2)这个圆柱是什么材料制成的?表面有电荷分布吗?试求之。解 (1)由,可得到 时, 时, (2)该圆柱体为等位体,所以是由导体制成的,其表面有电荷分布,电荷面密度为3.13 验证下列标量函数在它们各自的坐标系中满足(1) 其中;(2) 圆柱坐标;(3) 圆柱坐标;(4) 球坐标;(5) 球坐标。解 (1)在直角坐标系中 而 故 (2)在圆柱坐标系中 而 故 (3) 故 (4)在球坐标系中 而 故 (5) 故 3.14 已知的空间中没有电荷,下列几个函数中哪些是可能的电位的解?(1);(2);(3)(4)。解 (1)所以函数不是空间中的电位的解;(2) 所以函数是空间

7、中可能的电位的解;(3) 所以函数不是空间中的电位的解;(4) 所以函数不是空间中的电位的解。3.15 中心位于原点,边长为的电介质立方体的极化强度矢量为。(1)计算面束缚电荷密度和体束缚电荷密度;(2)证明总的束缚电荷为零。解 (1) 同理 (2) 3.16 一半径为的介质球,介电常数为,其内均匀分布自由电荷,证明中心点的电位为 解 由,可得到时, 即 , 时, 即 , 故中心点的电位为3.17 一个半径为的介质球,介电常数为,球内的极化强度,其中为一常数。(1) 计算束缚电荷体密度和面密度;(2) 计算自由电荷密度;(3)计算球内、外的电场和电位分布。解 (1) 介质球内的束缚电荷体密度为

8、 在的球面上,束缚电荷面密度为 (2)由于,所以 即 由此可得到介质球内的自由电荷体密度为 总的自由电荷量 (3)介质球内、外的电场强度分别为 介质球内、外的电位分别为 3.18 (1)证明不均匀电介质在没有自由电荷密度时可能存在束缚电荷体密度;(2)导出束缚电荷密度的表达式。解 (1)由,得束缚电荷体密度为 在介质内没有自由电荷密度时,则有 由于,有 所以 由此可见,当电介质不均匀时,可能不为零,故在不均匀电介质中可能存在束缚电荷体密度。 (2)束缚电荷密度的表达式为 3.19 两种电介质的相对介电常数分别为=2和=3,其分界面为=0平面。如果已知介质1中的电场的那么对于介质2中的和,我们可

9、得到什么结果?能否求出介质2中任意点的和?解 设在介质2中在处,由和,可得 于是得到 故得到介质2中的和在处的表达式分别为 不能求出介质2中任意点的和。由于是非均匀场,介质中任意点的电场与边界面上的电场是不相同的。3.20 电场中一半径为、介电常数为的介质球,已知球内、外的电位函数分别为 验证球表面的边界条件,并计算球表面的束缚电荷密度。解 在球表面上 故有 , 可见和满足球表面上的边界条件。 球表面的束缚电荷密度为3.21 平行板电容器的长、宽分别为和,极板间距离为。电容器的一半厚度()用介电常数为的电介质填充,如题3.21图所示。(1) (1) 板上外加电压,求板上的自由电荷面密度、束缚电

10、荷;(2) (2) 若已知板上的自由电荷总量为,求此时极板间电压和束缚电荷;(3) (3) 求电容器的电容量。解 (1) 设介质中的电场为,空气中的电场为。由,有 题 3.21图又由于 由以上两式解得 ,故下极板的自由电荷面密度为 上极板的自由电荷面密度为 电介质中的极化强度 故下表面上的束缚电荷面密度为 上表面上的束缚电荷面密度为 题3.22图 (2)由 得到 故 (3)电容器的电容为 3.22 厚度为、介电常数为的无限大介质板,放置于均匀电场中,板与成角,如题3.22图所示。求:(1)使的值;(2)介质板两表面的极化电荷密度。解 (1)根据静电场的边界条件,在介质板的表面上有 由此得到 (

11、2)设介质板中的电场为,根据分界面上的边界条件,有,即所以 介质板左表面的束缚电荷面密度 介质板右表面的束缚电荷面密度 3.23 在介电常数为的无限大均匀介质中,开有如下的空腔,求各腔中的和:(1)平行于的针形空腔;(2)底面垂直于的薄盘形空腔;(3)小球形空腔(见第四章4.14题)。解 (1)对于平行于的针形空腔,根据边界条件,在空腔的侧面上,有。故在针形空腔中,(2)对于底面垂直于的薄盘形空腔,根据边界条件,在空腔的底面上,有。故在薄盘形空腔中,3.24 在面积为的平行板电容器内填充介电常数作线性变化的介质,从一极板处的一直变化到另一极板处的,试求电容量。解 由题意可知,介质的介电常数为 设平行板电容器的极板上带电量分别为,由高斯定理可得所以,两极板的电位差 故电容量为 3.25 一体密度为的质子束,束内的电荷均匀分布,束直径为,束外没有电荷分布,试计算质子束内部和外部的径向电场强度。解 在质子束内部,由高斯定理可得 故 在质子束外部,有 故 3.26 考虑一块电导率不为零的电介质,设其介质特性和导电特性都是不均匀的。证明当介质中有恒定电流时,体积内将出现自由电荷,体密度为。试问有没有束缚体电荷?若有则进一步求出。解 对于恒定电流,有,故得到 介质中有束缚体电荷,且3.27 填充有两层介质的同

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号