数字信号处理-基于计算机的方法(第四版)答案 8-11章

上传人:小** 文档编号:61762045 上传时间:2018-12-12 格式:PDF 页数:29 大小:4.93MB
返回 下载 相关 举报
数字信号处理-基于计算机的方法(第四版)答案  8-11章_第1页
第1页 / 共29页
数字信号处理-基于计算机的方法(第四版)答案  8-11章_第2页
第2页 / 共29页
数字信号处理-基于计算机的方法(第四版)答案  8-11章_第3页
第3页 / 共29页
数字信号处理-基于计算机的方法(第四版)答案  8-11章_第4页
第4页 / 共29页
数字信号处理-基于计算机的方法(第四版)答案  8-11章_第5页
第5页 / 共29页
点击查看更多>>
资源描述

《数字信号处理-基于计算机的方法(第四版)答案 8-11章》由会员分享,可在线阅读,更多相关《数字信号处理-基于计算机的方法(第四版)答案 8-11章(29页珍藏版)》请在金锄头文库上搜索。

1、 1 SOLUTIONS MANUAL to accompany Digital Signal Processing: A Computer-Based Approach Fourth Edition Sanjit K. Mitra Prepared by Chowdary Adsumilli, John Berger, Marco Carli, Hsin-Han Ho, Rajeev Gandhi, Martin Gawecki, Chin Kaye Koh, Luca Lucchese, Mylene Queiroz de Farias, and Travis Smith Copyrigh

2、t 2011 by Sanjit K. Mitra. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of Sanjit K. Mitra, including, but not limited to, in any network or other electronic Storage or transmi

3、ssion, or broadcast for distance learning. 2 Chapter 8 Part 1 8.1 Analysis yields Y(z) = G(z) X(z) C(z)Y(z)(). Hence, H(z) = Y(z) X(z) = G(z) 1+G(z)C(z) = 2 (1+2K)+ 3z1 . The overall transfer function H(z) is given by H(z) = z2 1+1.5z1+(K +0.5)z2 . The transfer function is stable if K +0.5 0. Hence

4、H(z) is stable if 0 K 0.5. 8.2 The overall transfer function H(z) is given by H(z) = z1 1+(1.5+K)z1+0.5z2 . Thus The transfer function is stable if 1.5+K 1.5 which is satisfied if 3 K 0. 8.3 From the results of Problem 8.3, we have H(z) = G(z) 1+G(z)C(z) which can be solved yielding C(z) = G(z) H(z)

5、 G(z)H(z) . Substituting the expressions for G(z) and H(z) in this expression we get C(z) = 1.2+0.4667z11.8133z2 4.2867z3 3.735z41.9275z50.9z6 1+2.3667z1+ 3.65z2+ 3.7617z3+2.9217z4+1.49z5+0.56z6 . Pole-zero plots of G(z),C(z),and H(z)obtained using zplane can be easily obtained. 8.4 The structure wi

6、th internal variables is shown below. Analysis of this structure yields U(z) = KX(z)+ d2z1V(z), V(z) =U(z) d1z1V(z), Y(z) = d1z1V(z) z2V(z) d1V(z). Eliminating the internal variables we arrive at H(z) = Y(z) X(z) = K(d2+ d1z1+ z2) 1+d1z1 d2z2 . d1 2 d _1 +z 1 _ z 1 _ + z 1 _ z 1 _ _1 K X(z) Y(z) U(z

7、) V(z) 3 (a) Since the transfer function is second-order, the structure is non-canonic. (b) H(e j0) =K(d2+ d1+1) 1+ d1 d2 = K. Hence the structure has a unity gain at = 0 if K =1. (c) H(e j ) = K(d2 d1+1) 1 d1 d2 = K. Hence the structure has a unity gain at = if K =1. (d) If we let D(z) =1+ d1z1 d2z

8、2, then H(z) = Kz2D(z1) D(z) . Now, H(z)H(z1) = Kz2D(z1) D(z) Kz2D(z) D(z1) = K2. This implies H(e j)2 = H(z)H(z1) z=e j = K2, or in other words the transfer function has a constant magnitude for all values of . 8.5 The structure with internal variables is shown below. Analysis of this structure yie

9、lds V(z) = 2X(z)+U(z), U(z) = k1Y(z)+1X(z), Y(z) = z1V(z)+ k2z1U(z). Eliminating the internal variables we arrive at H(z) = Y(z) X(z) = (1+ k2)1+2z1 1+ k1(1+ k2)z1 . For stability we require k1(1+ k2) 1. 8.6 An equivalent representation of the structure of Figure P8.4 with internal variables is show

10、n below. Analysis of this structure yields U(z) = X(z)+0(z11)W(z), W(z) =1(z11)U(z) Y(z), Y(z) =U(z) 2(z11)Y(z). z 1 _ z 1 _ + k1 k2 1 2 X(z) Y(z)+ U(z) V(z) X(z)Y(z) 1 _ U(z) W(z) 0 (z 1) _ _1 1 (z 1) _ _1 2 (z 1) _ _1 4 Eliminating the internal variables we arrive at H(z) = Y(z) X(z) = 1 D(z) wher

11、e D(z) =1(0+2) 01+012+(0+2)+201 3012z1 + 01+ 3012z2012z3. 8.7 An equivalent representation of the structure of Figure P8.4 with internal variables is shown below. Let Ti(z) = iz1 1iz1 , i =1, 2, 3. Then analysis of the structure yields V(z) = X(z)+T2(z)U(z), W(z) = T1(z)V(z), U(z) =W (z)+T3(z)V(z),

12、Y(z) =0X(z)+W(z). Eliminating the internal variables we arrive at H(z) = Y(z) X(z) = 1 D(z) where 8.8 The structure with internal variables is shown below. Analysis of this structure yields (1): W(z) = X(z)+ k1Y(z),(2): U(z) = 1 1 z1 W(z)+k2Y(z), and (3): Y(z) = k1 1 z1 U(z). Substituting Eq. (2) in

13、 Eq. (3) we get (4): Y(z) = k1 1 z1 1 1 z1 W (z)+ k2Y(z) = k1 (1 z1)2 W (z) k1k2 1 z1 Y(z). Substituting Eq. (1) in Eq. (4) we then get Y(z) = k1 (1 z1)2 X(z)+ k1Y(z) k1k2 1 z1 Y(z) = k1 (1 z1)2 X(z) k1 1 z1 k1+ k2 k2z1 1 z1 Y(z), or, X(z) Y(z) 0 1 _1 z _1 z 1 _ 1 2 _1 z _1 z 2 _ 1 V(z) W(z) 3 _1 z

14、_1 z 3 _ 1 U(z) 5 1+ k1(k1+ k2 k2z1) (1 z1)2 Y(z) = k1 (1 z1)2 X(z). Hence, H(z) = Y(z) X(z) = k1 1+ k1(k1+ k2)(2+ k1k2)z1+ z2 . 8.10 From Figure P8.7(a), the input-output relation of the channel is given by Y1(z) Y2(z) = 1H12(z) H21(z)1 X1(z) X2(z) . Likewise, the input-output relation of the channel separation circuit of Figure P8.7(b) is given by V1(z) V2(z) = 1G12(z) G21(z)1 Y1(z) Y2(z) . Hence, the overall system is characterized by V1(z) V2(z) = 1G12(z) G21(z)1 1H12(z) H21(z)1

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 商业/管理/HR > 管理学资料

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号