《2018年优课系列高中数学苏教版选修1-1 3.3.2 极大值与极小值 课件(15张)1 》由会员分享,可在线阅读,更多相关《2018年优课系列高中数学苏教版选修1-1 3.3.2 极大值与极小值 课件(15张)1 (15页珍藏版)》请在金锄头文库上搜索。
1、导数及其应用第9课时,1.3.2 极大值与极小值,1、一般地,设函数y=f(x)在某个区间 内可导,则函数在该区间 如果f(x)0,如果f(x)0,则f(x)为增函数;,则f(x)为减函数.,一、知识回顾,、用导数法确定函数的单调性时的步骤是: (1),(3),求出函数的导函数,(2),求解不等式f(x)0,求得其解集,再根据解集写出单调递增区间,求解不等式f(x)0,求得其解集, 再根据解集写出单调递减区间,3.观察下图中P点附近图象从左到右的变化趋势、 P点的函数值以及点P位置的特点,函数图象在P点附近从左侧到右侧由“上升”变为“下降”(函数由单调递增变为单调递减),在P点附近,P点的位置
2、最高,函数值最大,一般地,设函数y=f(x)在x=x0及其附近有定义,如果f(x0)的值比x0附近所有各点的函数值都大,我们就说f(x0)是函数的一个极大值,记作y极大值=f(x0),x0是极大值点。如果f(x0)的值比x0附近所有各点的函数值都小,我们就说f(x0)是函数的一个极小值。记作y极小值=f(x0),x0是极小值点。极大值与极小值统称为极值.,1、函数极值的定义,二、数学建构,(1)在定义中,取得极值的点称为极值点,极值点是自变量(x)的值,极值指的是函数值(y)。,注意:,(2)极值是一个局部概念,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个
3、的定义域内最大或最小。,(3)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个。,(4)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示, 是极大值点, 是极小值点,而,2、求函数的极值,(1)如果x0是f(x)=0的一个根,并且在x0的左侧附近f(x)0,在x0右侧附近f(x)0,那么f(x0)是函数f(x)的一个极大值。,(2)如果x0是f(x)=0的一个根,并且在x0的左侧附近f(x)0,那么是f(x0)函数f(x)的一个极小值。,例:求f(x)xx的极值.,解:,三、数学应用,(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f(x)在方程根左右的值的符号,求出极大值和极小值.,3、 求函数f(x)的极值的步骤:,(1)求导数f(x);,(2)求方程f(x)=0的根,(x为极值点.),例3:函数 在 处具有极值,求a的值,变式:y=alnx+bx2+x在x=1和x=2处 有极值,求a、b的值,四、课堂练习,课本:P31 1、2、3、4,本节课主要学习了哪些内容?,1极值的判定方法 2极值的求法,注意点:,1f /(x0)0是函数取得极值的必要不充分条件,2数形结合以及函数与方程思想的应用,3要想知道 x0是极大值点还是极小值点就必须判断 f(x0)0左右侧导数的符号.,五、课时小结,