速调管实验报告

上传人:bin****86 文档编号:60357782 上传时间:2018-11-15 格式:DOCX 页数:15 大小:24.10KB
返回 下载 相关 举报
速调管实验报告_第1页
第1页 / 共15页
速调管实验报告_第2页
第2页 / 共15页
速调管实验报告_第3页
第3页 / 共15页
速调管实验报告_第4页
第4页 / 共15页
速调管实验报告_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《速调管实验报告》由会员分享,可在线阅读,更多相关《速调管实验报告(15页珍藏版)》请在金锄头文库上搜索。

1、为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划速调管实验报告-实验一AM调制与解调的仿真实验一实验目的1.加深理解AM调制与解调的基本工作原理与电路组成。2.掌握AM调制与解调系统的调试与测量技能。3.初步掌握Multism在电子仿真实验中的应用。二实验平台计算机和multisim电路仿真软件。三实验原理AM信号是载波信号振幅在Vm0上下按输入调制信号规律变化的一种调幅信号,表达式如下:vo(t)?Vm0?kau?(t)?coswct由表达式可知,在数学上,调幅电路的组成模型可由一个相加器和一个相乘器组成。AM为相乘器的乘积常数

2、,A为相加器的加权系数,且A?k,AMAVcm?ka设调制信号为:u?(t)=Ec?U?Mcos?t载波电压为:uc(t)?UcMcoswct上两式相乘为普通振幅调制信号:us(t)?K(EC?UcMcos?t)UcMcoswct=KUcM(EC+U?Mcos?t)coswct=KUcMEc(1?Macos?t)coswct=US(1?Macos?t)coswctU式中,Ma?M称为调幅系数(或调制指数),其中0Ma1。而当Ma1时,在C?t?附近,uc(t)变为负值,它的uc(t)包络已不能反映调制信号的变化而造成失真,通常将这种失真成为过调幅失真,此种现象是要尽量避免的。四仿真电路原理设计

3、图1AM调制电路及仿真结果图1图2解调电路及仿真结果图3图4图5:3.过调幅现象仿真结果五心得体会虽然电路实现比较简单,但是其中体现的原理还是很深奥的,通过此次电路仿真,也对振幅调制与解调电路的实现有了更为直观的认识。笔者相信随着近几年电子元件制作工艺越来越精湛,调制与解调在通信领域必将会有更广泛的应用。近代物理实验报告顺磁共振实验学院班级姓名学号时间XX年5月10日顺磁共振实验实验报告【摘要】电子顺磁共振又称电子自旋共振。由于这种共振跃迁只能发生在原子的固有磁矩不为零的顺磁材料中,因此被称为电子顺磁共振;因为分子和固体中的磁矩主要是自旋磁矩的贡献所以又被称为电子自旋共振。简称“EPR”或“E

4、SR”。由于电子的磁矩比核磁矩大得多,在同样的磁场下,电子顺磁共振的灵敏度也比核磁共振高得多。在微波和射频范围内都能观察到电子顺磁现象,本实验使用微波进行电子顺磁共振实验。【关键词】顺磁共振,自旋g因子,检波【引言】顺磁共振又称为电子自旋共振,这是因为物质的顺磁性主要来自电子的自旋。电子自旋共振即为处于恒定磁场中的电子自旋在射频场或微波场作用下的磁能级间的共振跃迁现象。顺磁共振技术得到迅速发展后广泛的应用于物理、化学、生物及医学等领域。电子自旋共振方法具有在高频率的波段上能获得较高的灵敏度和分辨率,能深入物质内部进行超低含量分析,但并不破坏样品的结构,对化学反应无干扰等优点,对研究材料的各种反

5、应过程中的结构和演变,以及材料的性能具有重要的意义。研究了解电子自旋共振现象,测量有机自由基DPPH的g因子值,了解和掌握微波器件在电子自由共振中的应用,从矩形谐振长度的变化,进一步理解谐振腔的驻波。【正文】一、实验原理电子的自旋轨道磁矩与自旋磁矩?l?原子中的电子由于轨道运动,具有轨道磁矩,其数值为:l号表示方向同Pl相反。在量子力学中PePl2me,负,因而?l?B1)?B?2me称为玻尔磁子。电子除了轨道运动外,其中e还具有自旋运动,因此还具有自旋磁矩,其数值表示为:?s?ePs?me。由于原子核的磁矩可以忽略不计,原子中电子的轨道磁矩和自旋磁矩合成原子的总磁矩:?j?gej(j?1)?

6、l(l?1)?s(s?1)Pjg?1?2me,其中g是朗德因子:2j(j?1)。在外磁场中原子磁矩要受到力的作用,其效果是磁矩绕磁场的方向作旋进,也?g就是Pj绕着磁场方向作旋进,引入回磁比同时原子角动量Pj和原子总磁矩Pj?m,m?j,j?1,j?2,e2me,总磁矩可表示成?j?Pj。?j取向是量子化的。Pj在外磁场方向上的投影为:其中m称为磁量子数,相应磁矩在外磁场方向上?j。的投影为:?j?m?mg?B;m?j,j?1,j?2,电子顺磁共振?j。原子磁矩与外磁场B相互作用可表示为:E?j?B?mg?BB?mB。不同的磁量子数m所对应的状态表示不同的磁能级,相邻磁能级间的能量差为?E?B

7、,它是由原子受磁场作用而旋进产生的附加能量。如果在原子所在的稳定磁场区又叠加一个与之垂直的交变磁场,且角频率?满足条件?g?BB,即?E?B,刚好满足原子在稳定外磁场中的邻近二能级差时,二邻近能级之间就有共振跃迁,我们称之为电子顺磁共振。P当原子结合成分子或固体时,由于电子轨道运动的角动量常是猝灭的,即j近似为零,所以分子和固体中的磁矩主要是电子自旋磁矩的贡献。根据泡利原理,一个电子轨道最多只能容纳两个自旋相反的电子,若电子轨道都被电子成对地填满了,它们的自旋磁矩相互抵消,便没有固有磁矩。通常所见的化合物大多数属于这种情况,因而电子顺磁共振只能研究具有未成对电子的特殊化合物。弛豫时间实验样品是

8、含有大量具有不成对电子自旋所组成的系统,虽然各个粒子都具有磁矩,但是在热运动的扰动下,取向是混乱的,对外的合磁矩为零。当自旋系统处在恒定的外磁场H0中时,系统内各质点的磁矩便以不同的角度取向磁场H0的方向,并绕着外场方向进动,从而形成一个与外磁场方向一致的宏观磁矩M。当热平衡时,分布在各能级上的粒子数服从波耳兹曼定律,即:N2E?E1?E?exp(?2)?exp(?)N1kTkT式中k是波耳兹曼常数,k=10-16,T是绝对温度。计算表明,低能级上的粒子数略比高能级上的粒子数多几个。这说明要现实出宏观的共振吸收现象所必要的条件,既由低能态向高能级跃迁的粒子数比由高能级向低能级跃迁的粒子数要多是

9、满足的。正是这一微弱的上下能级粒子数之差提供了我们观测电子顺磁共振现象的可能性。二、实验装置微波顺磁共振实验系统由三厘米固态信号发生器,隔离器,可变衰减器,波长计,魔T,匹配负载,单螺调配器,晶体检波器,矩形样品谐振腔,耦合片,磁共振实验仪,电磁铁等组成,为使联结方便,增加了H面弯波导,波导支架等元件。三厘米固态信号发生器:是一种使用体效应管做振荡源的信号发生器,为顺磁共振实验系统提供微波振荡信号。隔离器:位于磁场中的某些铁氧体材料对于来自不同方向的电磁波有着不同的吸收,经过适当调节,可使其哦对微波具有单方向传播的特性。隔离器常用于振荡器与负载之间,起隔离和单向传输作用。可变衰减器:把一片能吸

10、收微波能量的吸收片垂直与矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收可改变衰减量的大小。衰减器起调节系统中微波功率以及去耦合的作用。波长表:电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本上不影响波导中波的传输。当电磁波的频率满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。匹配负载:波导中装有很好地吸收微波能量的电阻片或吸收材料,它几乎能全部吸收入射功率。微波源:

11、微波源可采用反射式速调管微波源或固态微波源。本实验采用3cm固态微波源,它具有寿命长、输出频率较稳定等优点,用其作微波源时,ESR的实验装置比采用速调管简单。因此固态微波源目前使用比较广泛。通过调节固态微波源谐振腔中心位置的调谐螺钉,可使谐振腔固有频率发生变化。调节二极管的工作电流或谐振腔前法兰盘中心处的调配螺钉可改变微波输出功率。魔T:魔T是一个具有与低频电桥相类似特征的微波元器件,如图所示。它有四个臂,相当于一个ET和一个HT组成,故又称双T,是一种互易无损耗四端口网络,具有“双臂隔离,旁臂平分”的特性。利用四端口S矩阵可证明,只要1、4臂同时调到匹配,则2、3臂也自动获得匹配;反之亦然。

12、E臂和H臂之间固有隔离,反向臂2、3之间彼此隔离,即从任一臂输入信号都不能从相对臂输出,只能从旁臂输出。信号从H臂输入,同相等分给2、3臂;E臂输入则反相等分给2、3臂。由于互易性原理,若信号从反向臂2,3同相输入,则E臂得到它们的差信号,H臂得到它们的和信号;反之,若2、3臂反相输入,则E臂得到和信号,H臂得到差信号。当输出的微波信号经隔离器、衰减器进入魔T的H臂,同相等分给2、3臂,而不能进入E臂。3臂接单螺调配器和终端负载;2臂接可调的反射式矩形样品谐振腔,样品DPPH在腔内的位置可调整。E臂接隔离器和晶体检波器;2、3臂的反射信号只能等分给E、H臂,当3臂匹配时,E臂上微波功率仅取自于

13、2臂的反射。样品腔:样品腔结构,是一个反射式终端活塞可调的矩型谐振腔。谐振腔的末端是可移动的活塞,调节活塞位置,使腔长度等于半个波导波长的整数倍l?p?g/2时,谐振腔谐振。当谐振腔谐振时,电磁场沿谐振腔长l方向出现P?/2个长度为g的驻立半波,即TE10P模式。腔内闭合磁力线平行于波导宽壁,且同一驻立半波磁力线的方向相同、相邻驻立半波磁力线的方向相反。在相邻两驻立半波空间交界处,微波磁场强度最大,微波电场最弱。满足样品磁共振吸收强,非共振的介质损耗小的要求,所以,是放置样品最理想的位置。在实验中应使外加恒定磁场B垂直于波导宽边,以满足ESR共振条件的要求。样品腔的宽边正中开有一条窄槽,通过机

14、械传动装置可使样品处于谐振腔中的任何位置并可以从窄边上的刻度直接读数,调节腔长或移动样品的位置,可测出波导波长?。三、实验步骤连接系统,将可变衰减器顺时针旋至最大,开启系统中各仪器的电源,预热20分钟。按使用说明书调节各仪器至工作状态。调节微波桥路,用波长表测定微波信号的频率,使谐振腔处于谐振状态,将样品置于交变磁场最强处。调节晶体检波器输出最灵敏,并由波导波长的计算值大体确定谐振腔长度及样品所在位置,然后微调谐振腔的长度使谐振腔处于谐振状态。搜索共振信号,按下扫场按扭,调节扫场旋钮改变扫场电流,当磁场满足共振条件时,在示波器上便可看到共振信号。调节仪器使共振信号幅度最大,波形对称。使用高斯计

15、测定磁共振仪输出电流与磁场强度的数值关系曲线,确定共振时的磁场强度。根据实验测得的数据计算出g因子。实验一卫星数字电视接收一、实验目的1、了解接收卫星电视的具体方法。2、学会使用天线接收机,并掌握接收天线的调整。3、接收“中星6B卫星电视”,出稳定的节目。二、实验器材天线、高频头、卫星接收机、电视、馈线三、实验过程与原理1、接收天线的组成与工作原理天线是收集和处理远处的卫星发出的高频电磁波信号的装置。它的通信器件主要包括反射器、馈源、高频头和馈线。天线是无线电波的输入端口。机械部件主要包括馈机械部件主要包括馈机械部件主要包括馈机械部件主要包括馈源支撑杆、俯仰角调整机构、方位转动机构和底座等。2、方位角的计算从接收点到卫星的视线在接收点的水平面上有一条正投影线,从接收点的正北方向开始,顺时针方向至这条正投

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 总结/报告

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号