相变储热材料的制备

上传人:bin****86 文档编号:60229558 上传时间:2018-11-14 格式:DOCX 页数:20 大小:27.99KB
返回 下载 相关 举报
相变储热材料的制备_第1页
第1页 / 共20页
相变储热材料的制备_第2页
第2页 / 共20页
相变储热材料的制备_第3页
第3页 / 共20页
相变储热材料的制备_第4页
第4页 / 共20页
相变储热材料的制备_第5页
第5页 / 共20页
点击查看更多>>
资源描述

《相变储热材料的制备》由会员分享,可在线阅读,更多相关《相变储热材料的制备(20页珍藏版)》请在金锄头文库上搜索。

1、为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划相变储热材料的制备相变储热材料的制备与应用摘要:热能储存可以通过蓄热材料的冷却、加热、熔化、凝固。气化、化学反应等方式实现。它是一种平衡热能供需和使用的手段。热能储存按储热方式可分为三类,即显热储能、潜热储能和化学反应储热。关键词:相变;储热;复合材料一、相变材料在国内外的发展状况国外对相变储能材料的研究工作始于20世纪60年代。最早是以节能为目的,从太阳能和风能的利用及废热回收,经过不断的发展,逐渐扩展到化工、航天、电子等领域。近年来最主要的研究和应用集中在建筑物的集中空调、采暖及

2、被动式太阳房等领域。国外研究机构和科研人员对蓄热材料的理论研究工作,尤其是对蓄热材料的组成、蓄热容量随热循环变化情况、相变寿命、储存设备等进行了详细的研究,在实际应用上也取得了很大进展。相对于已经进入实用阶段的发达国家,我国在20世纪70年代末80年代初才开始对蓄热材料进行研究,所以国内相变储能材料的理论和应用研究还比较薄弱。上世纪90年代中期以来,国内研究重点开始转向有机相变材料和复合定形相变材料的研究开发。二、相变储热材料的分类从材料的化学组成来看,主要分为无机类相变材料和有机类相变材料,而在课堂上我们主要讲解的是有机类相变材料。无机相变材料包括结晶水合盐、熔融盐和金属合金等无机物。与无机

3、类相变储能材料相比,有机类相变储能材料具有无过冷及析出,性能稳定,无毒,腐蚀等优点。其中石蜡类相变潜热量大、相变温度范围广、价格低,所以在相变储能材料的研究使用中受到广泛的重视。但石蜡类相变储能材料热导率较低,也限制了其应用范围。为有效克服石蜡类有机化合物相变储能材料的缺点,同时改善相变材料的应用效果及拓展其应用范围,复合相变储能材料应运而生。复合相变材料由较稳定的有机化合物和具有较高导热系数的无机物颗粒制备而得,因而复合相变材料具有稳定的化学性质,无毒无腐蚀性或毒性和腐蚀性小。同时它的导热能力较有机物有较大的改善。(2)根据使用的温度不同又可以分为高、中、低温相变储热材料。一般使用温度高于1

4、00的相变储热材料称为高温相变储热材料。以熔融盐、氧化物和金属及其合金为主。使用温度低于100为中、低温相变储热材料,这类相变材料以水合盐、石蜡类、脂酸类为主,在低温类中也有利用液-气相变型的,如液氮、氦。从蓄热过程中材料相态的变化方式来看,可分为固液、固气、液气、固固四种相变。由于固气和液气两种方式相变是有大量气体产生,使材料的体积变的很大,所以实际中很少采用这两种方式。三、相变材料的分类选择因素合适相变温度;较大的相变潜热;合适的导热性能;性能稳定,可反复使用而不发生熔析和副反应;相变的可逆性,过冷度要尽量小;符合绿色化学要求:无毒、无腐蚀、无污染;使用安全、不易燃。易爆或氧化;蒸汽压要低

5、使之不易挥发损失;材料密度较大,从而确保单位体积储热密度较大;体积膨胀较小;成本低廉,原料易得。实用型的相变储热材料需要满足以上各项基本原则,但选用时也可以结合实际的应用情况,在满足主要条件之下,采用一定的技术和手段来克服其缺点和不足。四、相变材料的应用领域在太阳能方面的应用太阳能清洁、无污染,而且取用方便。利用太阳能是解决能源危机的重要途径之一。但是到达地球表面的太阳辐射能量密度偏低,且受到地理、季节、昼夜及天气变化等因素的制约,表现出稀薄性、间断性和不稳定性等特点。为了保证供热或供电装置的稳定不问断的运行,需要利用相变储能装置,在能量富裕时储能,在能量不足时释能。在工业余热方面的应用在冶金

6、、玻璃、水泥、陶瓷等部门都有大量的各式高温窑炉,它们的能耗非常之大,但热效率通常低于30,节能的重点是回收烟气余热。传统的做法是利用耐火材料的热熔变化来储热,这种储热设备的体积大、储热效果不明显。如果改用相变储热系统,则储热设备体积可减小3050,同时可节能1545,还可以起到稳定运行的作用。在建筑节能方面的应用有关资料显示,社会一次能源总消耗量的13用于建筑领域。提高建筑领域能源使用效率,降低建筑能耗,对于整个社会节约能源和保护环境都具有显著的经济效益和社会影响。利用相变储能建筑材料可有效利用太阳能来蓄热或电力负荷低谷时期的电力来蓄热或蓄冷,使建筑物室内和室外之间的热流波动幅度减弱、作用时间

7、被延迟,从而降低室内的温度波动,提高舒适度,以及节约能耗在其他方面的应用相变储热材料有着优异的储能性能,如果这种性能能利用到电池当中去,就会引起电池的一场变革。现在用的电池不管是一次性电池还是可充式电池,都是利用化学反应来实行放电和充电的。化学电池中含有大量的重金属,电池废弃后如处理不当,会对环境人的身体健康造成很大的危害。相变材料大多为无机非金属材料制成,这类材料无害无毒非常适合用来制造绿色电池。五、相变材料使用目前存在的问题耐久性相变材料在循环过程中热物理性质的退化问题;相变材料易从基体的泄漏问题;相变材料对基体材料的作用问题。经济性如果要最大化解决上述问题,将导致单位热能储存费用的上升,

8、必将失去与其他储热法或普通建材竞争的优势。相变储能建筑材料经过20多年的发展,其智能化功能性的特点勿容置疑。随着人们对建筑节能的日益重视,环境保护意识的逐步增强,相变储能建筑材料必将在今后的建材领域大有用武之地,也会逐渐被人们所认知,具有非常广阔的应用前景。六、结论相变储热材料有着优异的储热性能,这一性能在能源的利用上有着广阔的前景。相变储热材料大多数为无机非金属材料,原料易得,易于制备,无污染,是一种良好的绿色资源。随着能源的短缺,各国都在努力提高资源利用率和寻找可再生的绿色能源。相变材料开始受到人们的重视,相变材料在太阳能,工业余热利用,绿色建筑,航天航空领域有着广泛的应用。随着对相变材料

9、研究的深入,相变材料会应用在更多的领域。无机非金属材料工程专业学生论文XX年6月相变储热材料的有关学习李珍勤是一类在其本身发生相变的过程中,可以吸收环境的热能,并在需要时向环境发出热能,从而达到控制周边环境温度的目的的材料。其相变机理是:相变材料从液态向固态转变时,要经历物理状态的变化。在这两种相变过程中,材料要从环境中吸热,反之,向环境放热。在物理状态发生变化时可储存或释放的能量称为相变热,发生相变的温度范围很窄。物理状态发生变化时,材料自身的温度在相变完成前几乎维持不变。大量相变热转移到环境中时,产生了一个宽的温度平台。该温度平台的出现,体现了恒温时间的延长,并可与显热和绝缘材料区分开绝缘

10、材料只提供热温度变化梯度。相变材料在热循环时,储存或释放显热。相变材料在熔化或凝固过程中虽然温度不变但吸收或释放的潜热却相当大。以冰水相变的过程为例。对相变材料在相变时所吸收的潜热以及普通加热条件下所吸收的热量作一比较:当冰熔解时,吸收335Jg的潜热,当水进一步加热,温度每升高1它只吸收大约4坛的能量。冈此,由冰到水的相变过程中所吸收的潜热几乎比相变温度范围外加热过程的热吸收高80多倍。除冰水之外,已知的天然和合成的相变材料超过500种,且这些材料的相变温度和储热能力各不相同。把相变材料与普通建筑材料相结合,还可以形成一种新型的复合储能建筑材料这种建材兼备普通建材和相变材料两者的优点。然而绝

11、大多数无机物相变材料具有腐蚀性,相变过程中存在过冷和相分离的缺点。为防止无机物相变材料的腐蚀性。储热系统必须采用不锈钢等特殊材料制造,从而增加了制造成本:为抑制无机物相变材料在相变过程中的过冷和相分离,需通过大量试验研究,寻求好的成核剂和稳定剂。而有机物相变材料则热导率较低。相变过程中的传热性能差,在实际应用中通常采用添加高热导率材料如:铜粉,铝粉或石墨等作为填充物以提高热导率。或采用翅片管换热器,依靠换热面积的增加来提高传热性能,但这些强化传热的方法均未能解决有机相变材料热导率低的本质问题。相变过程一般是一等温或近似等温过程,相变过程中伴有能量的吸收或释放,这部分能量称为相变潜热,利用相变过

12、程的这一特点开发了许多相变储能材料。与显热储能材料相比,潜热储能材料不仅能量密度较高,而且所用装置简单、体积小、设计灵活、使用方便且易于管理。另外,它还有一个很大的优点,即这类材料在相(转载于:写论文网:相变储热材料的制备)变储能过程中,材料近似恒温,可以以此来控制体系的温度。同时,相变材料还具有以下几个特点:凝固熔化温度窄,相变潜热高,导热率高,比热大,凝固时无过冷或过冷度极小,化学性能稳定,室温下蒸汽压低。此外,相变材料还需与建筑材料相容,可被吸收。利用储能材料储能是提高能源利用效率和保护环境的重要手段之一,可用于解决热能供给与需求失配的矛盾,在能源、航天、军事、农业、建筑、化工、冶金等领

13、域展示出十分广泛和重要的应用前景,储热材料研究目前已成为世界范围内的研究热点。2相变储热材料的种类及其优缺点相变储能材料的相变形式一般可分为四类:固固相变、固液相变、液气相变和固气相变。相变储能材料按相变温度的范围分为高温(大于250),中温(100250)和低温(小于100)储能材料;按材料的组成成分又可分为无机类、有机类(包括高分子类)及无机有机复合相变储能材料。相变材料是由多组份构成的,包括主储热剂、相变点调整剂、防过冷剂、防相分离剂、相变促进剂等组份。无机类无机类固液相变材料有结晶水合盐类、熔融盐类、金属(包括合金)和其它无机类相变材料(如水)。其中最典型的是结晶水合盐类,结晶水合盐提

14、供了熔点从几摄氏度到一百多摄氏度的可供选择的相变材料。它们有比较大的熔解热和固定的熔点(实际是脱出结晶水的温度,脱出的结晶水使盐溶解而吸热,降温时其发生逆过程,吸收结晶水而放热)。相变机理如下:ABmH2O加热(TTm)冷却(TTm)冷却(TTm)ABpH2O+(m-p)H2O-Q其中,m和p为结晶水的个数,Tm为熔点,Q为溶解热。结晶水合盐通常是中、低温相变储能材料中的重要一类,有如下的优点:使用范围广,价格较便宜、导热系数大(与有机类相变材料相比)、熔解热较大,密度大、一般呈中性。但是这类材料通常存在着两个问题,一是过冷现象,解决的方法有:a1加成核剂,如加入微粒结构与盐类结晶物相类似的物

15、质;b1冷指法,保持一部分冷区,使未熔化的一部分晶体作为成核剂。另一个问题是相分离,解决的办法有:a1加增稠剂;b1加晶体结构改变剂;c1盛装相变材料的容器采用薄层结构;d1摇晃或搅动。徐伟亮研究了水合乙酸钠相变储热的性能,发现硼砂对过冷现象有明显的抑制,羟甲基纤维素、聚丙烯酰胺等对相分离现象有明显的抑制。固固相变储热材料的无机盐类主要是利用固体状态下不同种晶型的变化而进行吸热和放热的,主要有层状钙铁矿、Li2SO4、KHF2等代表性物质。通常它们的相变温度较高,适合于高温范围内的储能和控温之用,而中、低温的材料较少,因此不能完全满足人们的需要、目前在实际中应用也不是很多。有机类典型的有机类相变材料有:石蜡、酯酸类、高分子化合物等。有机类相变材料具有固体成型好、不易发生相分离及过冷现象、腐蚀性较小、性能稳定等特征,但与无机类相比,其导热性较差,熔点较低,溶解热较小且易挥发、易燃烧。石蜡主要由直链烷烃混合而成,可用通式CnH2n+2表示。短链烷烃熔点较低,链增长时,熔点开始增长较快,而后逐渐减慢。一般说来,同系物的相变温度和相变焓会随碳链的增长而增大,这样可以得到具有一系列相变温度的储能材料,但随着碳链的增长,相变温度的增加值会逐渐减小,其熔点最终将趋于一定

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 总结/报告

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号