相变材料,低温,中温,高温

上传人:bin****86 文档编号:60229532 上传时间:2018-11-14 格式:DOCX 页数:14 大小:23.63KB
返回 下载 相关 举报
相变材料,低温,中温,高温_第1页
第1页 / 共14页
相变材料,低温,中温,高温_第2页
第2页 / 共14页
相变材料,低温,中温,高温_第3页
第3页 / 共14页
相变材料,低温,中温,高温_第4页
第4页 / 共14页
相变材料,低温,中温,高温_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《相变材料,低温,中温,高温》由会员分享,可在线阅读,更多相关《相变材料,低温,中温,高温(14页珍藏版)》请在金锄头文库上搜索。

1、为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划相变材料,低温,中温,高温无机非金属材料工程专业学生论文XX年6月相变储热材料的有关学习李珍勤是一类在其本身发生相变的过程中,可以吸收环境的热能,并在需要时向环境发出热能,从而达到控制周边环境温度的目的的材料。其相变机理是:相变材料从液态向固态转变时,要经历物理状态的变化。在这两种相变过程中,材料要从环境中吸热,反之,向环境放热。在物理状态发生变化时可储存或释放的能量称为相变热,发生相变的温度范围很窄。物理状态发生变化时,材料自身的温度在相变完成前几乎维持不变。大量相变热转移到环境中

2、时,产生了一个宽的温度平台。该温度平台的出现,体现了恒温时间的延长,并可与显热和绝缘材料区分开绝缘材料只提供热温度变化梯度。相变材料在热循环时,储存或释放显热。相变材料在熔化或凝固过程中虽然温度不变但吸收或释放的潜热却相当大。以冰水相变的过程为例。对相变材料在相变时所吸收的潜热以及普通加热条件下所吸收的热量作一比较:当冰熔解时,吸收335Jg的潜热,当水进一步加热,温度每升高1它只吸收大约4坛的能量。冈此,由冰到水的相变过程中所吸收的潜热几乎比相变温度范围外加热过程的热吸收高80多倍。除冰水之外,已知的天然和合成的相变材料超过500种,且这些材料的相变温度和储热能力各不相同。把相变材料与普通建

3、筑材料相结合,还可以形成一种新型的复合储能建筑材料这种建材兼备普通建材和相变材料两者的优点。然而绝大多数无机物相变材料具有腐蚀性,相变过程中存在过冷和相分离的缺点。为防止无机物相变材料的腐蚀性。储热系统必须采用不锈钢等特殊材料制造,从而增加了制造成本:为抑制无机物相变材料在相变过程中的过冷和相分离,需通过大量试验研究,寻求好的成核剂和稳定剂。而有机物相变材料则热导率较低。相变过程中的传热性能差,在实际应用中通常采用添加高热导率材料如:铜粉,铝粉或石墨等作为填充物以提高热导率。或采用翅片管换热器,依靠换热面积的增加来提高传热性能,但这些强化传热的方法均未能解决有机相变材料热导率低的本质问题。相变

4、过程一般是一等温或近似等温过程,相变过程中伴有能量的吸收或释放,这部分能量称为相变潜热,利用相变过程的这一特点开发了许多相变储能材料。与显热储能材料相比,潜热储能材料不仅能量密度较高,而且所用装置简单、体积小、设计灵活、使用方便且易于管理。另外,它还有一个很大的优点,即这类材料在相变储能过程中,材料近似恒温,可以以此来控制体系的温度。同时,相变材料还具有以下几个特点:凝固熔化温度窄,相变潜热高,导热率高,比热大,凝固时无过冷或过冷度极小,化学性能稳定,室温下蒸汽压低。此外,相变材料还需与建筑材料相容,可被吸收。利用储能材料储能是提高能源利用效率和保护环境的重要手段之一,可用于解决热能供给与需求

5、失配的矛盾,在能源、航天、军事、农业、建筑、化工、冶金等领域展示出十分广泛和重要的应用前景,储热材料研究目前已成为世界范围内的研究热点。2相变储热材料的种类及其优缺点相变储能材料的相变形式一般可分为四类:固固相变、固液相变、液气相变和固气相变。相变储能材料按相变温度的范围分为高温(大于250),中温(100250)和低温(小于100)储能材料;按材料的组成成分又可分为无机类、有机类(包括高分子类)及无机有机复合相变储能材料。相变材料是由多组份构成的,包括主储热剂、相变点调整剂、防过冷剂、防相分离剂、相变促进剂等组份。无机类无机类固液相变材料有结晶水合盐类、熔融盐类、金属(包括合金)和其它无机类

6、相变材料(如水)。其中最典型的是结晶水合盐类,结晶水合盐提供了熔点从几摄氏度到一百多摄氏度的可供选择的相变材料。它们有比较大的熔解热和固定的熔点(实际是脱出结晶水的温度,脱出的结晶水使盐溶解而吸热,降温时其发生逆过程,吸收结晶水而放热)。相变机理如下:ABmH2O加热(TTm)冷却(TTm)冷却(T推动高温相变储热技术的发展。另外,低温储热技术是当前空调行业研究开发的热点,并将成为重要的节能手段;(f)纳米复合材料领域的不断发展,为制备高性能复合相变储热材料提供了很好的机遇。利用纳米材料的特点制备新型高性能纳米复合相变储热材料是制备高性能复合相变材料的新途径。相变虚热材料综述蓄热技术是提高能源

7、利用效率和保护环境的重要技术,可用于解决热能供给与需求失配的矛盾,在太阳能利用、电力“移峰填谷”、废热和余热的回收利用以及工业与民用建筑和空调的节能等领域具有广泛的应用前景,是世界范围内的研究热点目前,主要的蓄热方法有显热蓄热、潜热蓄热和化学反应蓄热三种显热蓄热是利用物质的温度升高来存储热量的利用陶瓷粒、水、油等的热容进行蓄热,把已经高温或低温变换的热能贮存起来加以利用,如固体显热蓄热的炼铁热风炉、蓄热式热交换器、蓄热式燃烧器等,通常的显热蓄热方式简单,成本低,但储存的热量小,其放热不能恒温的缺点化学反应蓄热是指利用可逆化学反应的结合热储存热能发生化学反应时,可以有催化荆,也可以没有催化剂一种

8、高密度高能量的蓄热方式,它的储能密度一般高于显热和潜热,此种储能体系通过催化剂和产物分离易于能量长期储存潜热蓄热是利用物质在凝固熔化、凝结气化、凝华升华以及其他形式的相变过程中,都要吸收或放出相变潜热的原理来进行能量储存的技术利用相变材料相变时单位质量潜热,蓄热量非常大能把热能贮存起来加以利用,如空间太阳能发电用蓄热器,深夜电力调峰用蓄热器,其储能比显热一个数量级,而且放热温度恒定,但其储热介质一般有过冷、相分离、易老化等缺点。一相变蓄热材料的分类根据相变种类的不同,相变蓄热一般分为四类:固一固相变、固一液相变、液一气相变及固一气相变。由于后两种相变方式在相变过程中伴随有大量气体的存在,使材料

9、体积变化较大,因此尽管它们有很大的相变热,但在实际应用中很少被选用,固一固相变和固一液相变是实际中采用较多的相变类型。根据材料性质的不同,一般来说相变蓄热材料可分为:有机类、无机类及混合类相变蓄热材料。其中,石蜡类、脂酸类是有机类中的典型相变蓄热材料;结晶水合盐、熔融盐和金属及合金等是无机类中的典型相变蓄热材料。混合类又可分为:有机混合类、无机混合类及无机一有机混合类。根据使用温度范围的不同,潜热蓄热材料又可分为分为高、中、低温三种1低温相变蓄热材料低温相变蓄热材料主要有无机和有机两类无机相变材料主要包括结晶水合盐、熔融盐、金属或合金结晶水合盐通常是中、低温相变蓄能材料中重要的一类,具有价格便

10、宜,体积蓄热密度大,熔解热大,熔点固定,热导率比有机相变材料大,一般呈中性等优点但在使用过程中会出现过冷、相分离等不利因素,严重影响了水合盐的广泛应用决过冷的办法主要有两种,一种是加入微粒结构与盐类结晶物相类似的物质作为成核剂例如,DrTelkes经过千余次试验后发现在Na2SO。10HzQ中加入硼酸能明显地降低过冷度;另一种是保留一部分固态相变材料,即保持一部分冷区,使未融化的一部分晶体作为成核剂,这种方法文献上称为冷指(Coldfinger)法,虽然操作简单,但行之有效J为了解决相分离的问题,防止残留固体物沉积于容器底部,人们也研究了一些方法,一种是将容器做成盘状,将这种很浅的盘状容器水平

11、放臵有助于减少相分离;另一种更有效的方法是在混合物中添加合适的增稠剂,防止混合物中成分的分离,但并不妨碍相变过程。有机相变材料主要包括石蜡,脂肪酸及其他种类石蜡主要由不同长短的直链烷烃混合而成,可用通式C。H抖:表示,可以分为食用蜡、全精制石蜡、半精制石蜡、粗石蜡和皂用蜡等几大类,每一类又根据熔点分成多个品种短链烷烃的熔点较低,随着碳链的增长,熔点开始增长较快,而后逐渐减慢,再增长时熔点将趋于一致。VHMoreos等人研究了将不同形状的翅片管用于潜热蓄热系统中增强换热睁引,LFCabeza等人研究了将高导热率粉末、碳纤维植入相变材料中以增强导热率,该法同时也能有效地减少石蜡相变时的容积变化10

12、3脂肪酸的性能特点与石蜡相似1卜12,其分子通式为GH。O:大部分的脂肪酸都可以从动植物中提取,其原料具有可再生和环保的特点,是近年来研究的热点其他还有有机类的固一固相变材料,如高密度聚乙烯,多元醇等这种材料发生相变时体积变化小,过冷度轻,无腐蚀,热效率高,是很有发展前途的相变材料复合相变材料材料的复合化可将各种材料的优点集合在一起,制备复合相变材料是潜热蓄热材料的一种必然的发展趋势。复合相变材料的支撑目前,国内外学者研制的支撑材料主要有膨胀石墨、陶瓷、膨润土、微胶囊等膨胀石墨是由石墨微晶构成的疏松多孔的蠕虫状物质,它除了保留了鳞片石墨良好的导热性外,还具有良好的吸附性1引陶瓷材料有耐高温、抗

13、氧化、耐化学腐蚀等优点,被大量地选做工业蓄热体主要的陶瓷材质有石英砂、碳化硅、刚玉、莫来石质、锫英石质和堇青石质等膨润土有独特的纳米层问结构,采用“插层法”将有机相变材料嵌入其层状空间,制备有机无机纳米复合材料,是开发新型纳米功能材料的有效途径,微胶囊相变材料口阳是用微胶囊技术制备出的复合相变材料。在微胶囊相变材料中发生相变的物质被封闭在球形胶囊中,有效地解决了相变材料的泄漏、相分离及腐蚀等问题,有利于改善相变材料的应用性能,并可拓宽相变蓄热技术的应用领域。中温相变蓄热材料太阳能热利用与建筑节能等领域对相变蓄热材料的需求,使低温范围蓄热材料具有广泛的应用前景;高温工业炉蓄热室、工业加热系统的余

14、热回收装臵以及太空应用,推动了高温相变蓄热技术的迅速发展因此,国内外对制冷、低温和高温相变蓄热材料(PCM)做了相当多的研究,但中温PCM则较少使用不过,近年来相关领域的发展给中温PCM的应用创造了很大的空间。高温相变蓄热材料高温相变材料的热物性相变材料的热物性主要包括:相变潜热、导热系数、比热容、膨胀系数、相变温度等直接影响材料的蓄热密度、吸放热速率等重要性能,相变材料热物性的测量对于相变材料的研究显得尤为重要。高温相变材料通常具有一定的高温腐蚀性,通常需要对其进行封装。微封装的相变材料具有许多优点,促使人们对此进行研究。Heine等人研究了4种金属对熔点在235857的6种熔融盐的耐腐蚀性

15、能。Lane对不同的材料在不同尺寸下封装的优点和缺点进行分析,并对材料的兼容性进行了研究由于用途广泛,很多个人和公司。如BASF已加入了相变材料微封装的研究行列。微封装相变材料在不同热控制领域的潜在应用将受到其成本的限制,但对于太空应用,热控制性能远重于其成本。一些研究人员认为,相变材料微封装技术将是太空技术的一个里程碑高温相变复合材料的研究进展将相变材料同耐腐蚀性好的常规材料复合是高温相变材料的研究方向之一目前,高温相变复合材料可分为陶瓷基和金属基两大类邹向采用陶瓷技术将碳酸盐共熔物蓄热介质与陶瓷基体复合在一起,制成一种新型高温相变复合材料该材料的致密度和高温相变潜热分别达到了理论值的90和70,使用温度可达800;王华等人采用融浸工艺,将性能优良的高温熔融盐分别与不同的金属基复合,得到一种新型高温相变复合材料该金属基相变复合材料具有高的吸热一放热率、高蓄热密度等优点他们还进行了高温熔融盐相变蓄热材料与不同高性能陶瓷复合的研究,成功制备出燃料工业炉用高温相变复合材料相变蓄热系统的数值模拟目前,文献中提出的模型较多,但因系统结构、传热方式和相变材料的差异,模型的通用性较差以下选出的文献中对高温相变蓄热系统的数值模拟具有代表性的研究邢玉明等人采用焓方法建立了以控制体单元为对象的单管相变蓄热模型,并对系统进行了数值分析,得到了循环工质气体出口温

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 总结/报告

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号