无机材料,有机材料

上传人:bin****86 文档编号:60077902 上传时间:2018-11-14 格式:DOCX 页数:13 大小:23.57KB
返回 下载 相关 举报
无机材料,有机材料_第1页
第1页 / 共13页
无机材料,有机材料_第2页
第2页 / 共13页
无机材料,有机材料_第3页
第3页 / 共13页
无机材料,有机材料_第4页
第4页 / 共13页
无机材料,有机材料_第5页
第5页 / 共13页
点击查看更多>>
资源描述

《无机材料,有机材料》由会员分享,可在线阅读,更多相关《无机材料,有机材料(13页珍藏版)》请在金锄头文库上搜索。

1、为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划无机材料,有机材料由碳、氢、氧、氮等元素组成的材料统称为有机材料。比如木材、塑料、橡胶、油漆等等,简单的说,有机材料都能够在常温常压下燃烧。而无机材料则不能,比如钢筋、水泥、黏土砖等等。有机材料的突出特点是导热系数低、保温性能好。无机材料的优势在于阻燃性能优异。而不同品种之间各个性能指标差别也很大。有机材料中PU发泡材料的导热系数最低,保温性能和防水性优异,但价格相对较高;XPS板导热系数仅次于PU发泡材料,强度高、耐潮湿,价格相对便宜。无机材料中,岩棉板导热系数较高、吸湿性强、易脱

2、落,但防火性能优异;珍珠岩等浆料的特点也是导热系数高、防火性好,但存在吸水性强的缺点。有机物即有机化合物。含碳化合物或碳氢化合物及其衍生物的总称。有机物是生命产生的物质基础。有机物的特点:多数有机化合物主要含有碳、氢两种元素,此外也常含有氧、氮、硫、卤素、磷等。部分有机物来自植物界,但绝大多数是以石油、天然气、煤等作为原料,通过人工合成的方法制得。和无机物相比,有机物数目众多,可达几百万种。有机化合物的碳原子的结合能力非常强,互相可以结合成碳链或碳环。碳原子数量可以是1、2个,也可以是几千、几万个,许多有机高分子化合物甚至可以有几十万个碳原子。此外,有机化合物中同分异构现象非常普遍,这也是造成

3、有机化合物众多的原因之一。有机化合物除少数以外,一般都能燃烧。和无机物相比,它们的热稳定性比较差,电解质受热容易分解。有机物的熔点较低,一般不超过400。有机物的极性很弱,因此大多不溶于水。有机物之间的反应,大多是分子间反应,往往需要一定的活化能,因此反应缓慢,往往需要催化剂等手段。而且有机物的反应比较复杂,在同样条件下,一个化合物往往可以同时进行几个不同的反应,生成不同的产物。无机物即无机化合物。一般指碳元素以外各元素的化合物,如水、食盐、硫酸、石灰等。但一些简单的含碳化合物如一氧化碳、二氧化碳、碳酸、碳酸盐和碳化物等,由于它们的组成和性质与无机物相似,因此也作为无机物来研究。绝大多数的无机

4、物可以归入氧化物、酸、碱、盐四大类保温有机材料和无机材料的区别标签:纤维水泥板水泥压力板水泥板时间:XX-07-1114:39:41点击:729回帖:1上一篇:世邦反击式破碎机,缓解国家建筑下一篇:照明工业动力升级-风光互补路灯考虑到消防防火安全要求下的建筑保温材料的有机与无机保温体系卓创资讯晨曦XX-4-211:05:44【大中小】【关闭】1、前言随着建筑外墙保温体系的推广,建筑外墙保温体系的火灾隐患给社会带来震撼,公安部、消防局、住房和城乡建设部从社会安全角度出发,先后发布两个文件,试图通过提高建筑保温材料的阻燃性能,来解决保温市场的安全防火问题。该文件要求民用建筑外保温材料的燃烧性能宜为

5、A级,且不应低于B2级。使建筑外墙保温市场出现新的约束,加剧了建筑保温材料领域中占主导地位的有机体系与无机体系两大保温材料之间的竞争。从我国不同气候区的建筑保温要求看,要在短时间内推广A级阻燃保温材料而又同时达到建筑节能设计标准是不现实的,因为对不同热工设计气候区的外墙热阻要求有一定的区别,如何针对不同的区域采用不同的建筑保温体系以同时满足建筑节能和消防安全的要求是目前建筑保温行业的巨大挑战。2、有机与无机保温体系的技术特点及优劣对比有机与无机的保温材料各有优缺点,我国幅员辽阔,温差变化大,外墙保温的材料及技术体系随时间的发展一定会出现多种不同的体系。根据各个地区的气候条件和建筑类型,因地制宜

6、地选择适当的保温材料,才能兼顾节能与安全。有机类保温材料主要来源于石油附产品,包括发泡聚苯板、挤塑聚苯板、喷涂聚氨酯以及聚苯颗粒等。从全国范围看,有机类外墙外保温系统占据了我国当前外墙外保温市场75%以上的份额。无机保温材料包括膨胀珍珠岩、中空玻化微珠、闭孔珍珠岩、岩棉、矿棉、玻璃棉和轻质砌块自保温体系等,主要取材于无机类材料如石屑、玻璃、工业废渣等。随着国家对于墙体材料防火安全等级规定的重视及要求,无机保温材料的市场份额将大幅提升。由于材料化学性质的特点,无机体系和有机体系面对保温节能性能和消防安全的矛盾选择:从保温性能而言,有机材料优于无机材料。如挤塑板的导热系数在之间,保温效果良好。所以

7、在北方寒冷地区要使建筑具有保温节能性能,大量使用有机材料在短时间内仍然是不二的选择;而无机类保温材料的导热系数一般在左右,甚至更高,多半为A级阻燃材料,消防安全性能好,但是保温效果不甚理想,在南方隔热要求不高的建筑外墙中使用是很好的保温材料。具体的种类和厚度及其体系设计应该由专业公司根据具体建筑的功能要求做具体的优化设计。吸水率与透气性也是一项衡量保温材料保温性能稳定性的重要指标。如果保温系统透气性不好,不仅影响饰面层,还会导致室内空气浑浊。有机材料尤其是挤塑聚苯板的吸水率很低,具有很好的防水性。与此相反,传统的无机类保温材料,如玻璃棉、岩棉、矿棉制品等,具有较大的吸水率和水蒸汽渗透率,因而保

8、温效果不够稳定,尤其用于低温保温时,此类保温材料一旦含有水份,导热系数会急剧上升,隔热效果将明显降低。保温材料与水及水蒸气的不同作用可能影响到保温材料体系的应用耐久性能,这也是保温体系重要的技术指标。如果不对这些因素加以考虑和设计,就会出现大量的耐久性破坏:既保温体系可能在正常的设计寿命时间内提前破坏。从建筑保温材料的使用寿命上看,无机保温材料也有极大优势。在正常使用的情况下,无机保温材料保温系统的寿命可与其基层墙体同寿命。而有机保温材料的使用寿命则相对较短,一般为1520年。从防火性能方面考虑,无机材料的优势比较明显。无机保温材料防火阻燃性高。对于有机材料来讲,防火性能却是其致命伤,不仅易燃

9、,而且热分解时还会产生大量有毒物质苯乙烯。对于公共建筑及重要的建筑,对于有机体系的使用确实应该采取特殊措施保证安全。总体而言,有机类保温材料具有重量轻、可加工性好、致密性高、保温隔热效果好的优点;缺点是安全性能差,变形系数大、不耐老化、稳定性差,在实际施工应用中存在一定困难,而且造价高,不符合消防规定,难以循环再利用。无机保温材料由于其配方及技术工艺上的局限,大多数材料制品结构单一,不稳定,导热系数较高,强度低,柔韧性差,易碎易损;优点是性能稳定、变形系数小,既防火阻燃又抗老化,使用寿命相对较长,施工难度相对较小,工程成本相对较低,可以循环再利用。对于建筑保温体系以上的技术缺点,需要通过系统的

10、科学实验寻找到适当的复合体系以平衡建筑保温性能和消防防火安全性能。3、防火暂行规定下保温材料的发展趋向随着科学的发展,技术的进步,我国外墙保温材料体系沿着“有机材料体系为主有机、无机两大体系并存有机、无机材料合理结合使用的复合体系”的方向前进。现实需求是需要加强对现有保温材料的改型及研究,探索有机与无机材料的结合使用,充分利用有机、无机保温材料各自的优点,弥补双方的缺陷,使建筑兼顾节能和阻燃的效果。从目前的技术发展和市场供应实际情况看,短时间内推广A级阻燃无机保温体系是不现实的,但是考虑到消防安全的重要性,应该马上停止易燃及可燃材料的使用,以难燃级为建筑保温体系的最低标准,并严格执行。有机无机

11、复合材料一、有机、无机复合材料的定义复合材料是指结合两种或两种以上不同有机、无机相的物质以物理方式结合而成,撷取各组成成分的优点,以构成需要之结构材。往往以一种材料为基体,另一种材料为增强体组合而成的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。高聚物基复合材料PMCS最先得到发展,已有半个多世纪的历史,在工业、民用、航天航空、生态、智能等领域取得了广泛的应用1。有机、无机复合材料即用有机材料与无机材料通过某种方式结合而成的全新材料。复合后的新材料具有有机、无机材料的各自优点,并且可以在力学、光学、热学、电磁学和生物学等方面赋予材料许

12、多优异的性能,正在成为材料科学研究的热点之一。目前,国内外这方面的研究成果正不断见诸报道2,3。二、有机、无机复合材料的特点复合材料中以纤维增强材料应用最广、用量最大。其特点是比重小、比强度和比模量大。例如碳纤维与环氧树脂复合的材料,其比强度和比模量均比钢和铝合金大数倍,还具有优良的化学稳定性、减摩耐磨、自润滑、耐热、耐疲劳、耐蠕变、消声、电绝缘等性能。石墨纤维与树脂复合可得到膨胀系数几乎等于零的材料。纤维增强材料的另一个特点是各向异性,因此可按制件不同部位的强度要求设计纤维的排列。以碳纤维和碳化硅纤维增强的铝基复合材料,在500时仍能保持足够的强度和模量。碳化硅纤维与钛复合,不但钛的耐热性提

13、高,且耐磨损,可用作发动机风扇叶片。碳化硅纤维与陶瓷复合,使用温度可达1500,比超合金涡轮叶片的使用温度高得多。碳纤维增强碳、石墨纤维增强碳或石墨纤维增强石墨,构成耐烧蚀材料,已用于航天器、火箭导弹和原子能反应堆中。非金属基复合材料由于密度小,用于汽车和飞机可减轻重量、提高速度、节约能源。用碳纤维和玻璃纤维混合制成的复合材料片弹簧,其刚度和承载能力与重量大5倍多的钢片弹簧相当。三、有机、无机复合材料的应用1有机一无机纳米复合材料纳米复合材料是一类新垫复合材料,它是指一种或多种组分以纳米量级的微粒,即接近分子水平的微粒复合于基质中构成一种复合材料纳米复合材料因其分散相尺寸介于宏观与微观之间的过

14、渡区域,将给材料的物理和化学性质带来特殊的变化,正日益受到关注纳米材料被誉为21世纪最有前途的材料”,该类材料研究的种类已经涉及到无机物、有机物和非晶态材料等有机一无机纳米复合材料因其综合了有机物和无机物各自的优点,并且可以在力学、热学、光学、电磁学和生物学等方面赋予材料许多优异的性能,正在成为材料科学研究的热点之一有机一无机纳米复合技术最先制得的纳米复合材料是无机纳米复合材料,如金属、非金属陶瓷和石英玻璃等目前,纳米复合材料研究的种类已涉及到有机物和非晶态材料等各国首先着重于纳米复合材料制备方法的研究,特别是薄膜制备法的研究纳米复合方法常用的有三种:溶胶一凝胶法、嵌入法和纳米微粒填充法其中溶

15、胶一凝胶法较早用于制备有机一无机分子杂化材料或纳米复合材料;嵌入法在分子材料领域表现出很好的前景,特别是将不同的性能综合到单一的材料中去溶胶一凝胶法(SolGelProcess)在l8世纪中期,Ebelman和GrahmanC在对二氧化硅凝胶的研究中,产生了用溶胶一凝胶工艺制备无机陶瓷和玻璃的兴趣溶胶一凝胶产品最早出现在50年代,除了粉末材料外,多孔固体、纤维、涂层和薄膜也相继被制备溶胶一凝胶工艺的基本过程是液体金属烷氧化物M(OR)(M为si、T等元素,R为cH、CIHs等烷基)与醇和水混合,在催化剂作用下发生如下水解一缩合反应:水解反应TEOS+4H2OSi(OH)4+4EtOH缩合反应Si(OH)4+Si(OH)4J(HO)3SiOSi(OH)3+H2O当另外的-=Si-OH四配位体互相链接,则发生如下缩聚反应,并最终形成三维的siO。凝胶网络(OH)3Si-O-Si(OH)3+6Si(OH)4(HO)3Si-O)3Si-O-Si(OSi(OH)3)3+6H2O凝胶的结构取决于水解反应速率和缩合反应速率。影响速率的因素包括:温度、溶剂的性质、烷氧化物先驱体的性质、电解质(酸、碱)的性质和浓度、R比值(H2OTEOS)和压力等近年来,利用金属烷氧化物的溶胶一凝胶反应与聚合反应巧妙的组合,制备有机一无机纳米复合材料已成为材料科学新的热点

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 总结/报告

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号