应用计算机辅助药物设计研究论文

上传人:bin****86 文档编号:60011805 上传时间:2018-11-13 格式:DOCX 页数:29 大小:30.48KB
返回 下载 相关 举报
应用计算机辅助药物设计研究论文_第1页
第1页 / 共29页
应用计算机辅助药物设计研究论文_第2页
第2页 / 共29页
应用计算机辅助药物设计研究论文_第3页
第3页 / 共29页
应用计算机辅助药物设计研究论文_第4页
第4页 / 共29页
应用计算机辅助药物设计研究论文_第5页
第5页 / 共29页
点击查看更多>>
资源描述

《应用计算机辅助药物设计研究论文》由会员分享,可在线阅读,更多相关《应用计算机辅助药物设计研究论文(29页珍藏版)》请在金锄头文库上搜索。

1、为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划应用计算机辅助药物设计研究论文计算机辅助药物设计一、药物发现一般过程新药的研究有三个决定阶段:先导化合物的发现,新药物的优化研究,临床与开发研究。计算机辅助药物设计的主要任务就是先导化合物的发现与优化。二、合理药物设计1、合理药物设计是依据与药物作用的靶点,即广义上的受体,如酶、受体、离子通道、病毒、核酸、多糖等,寻找和设计合理的药物分子。通过对药物和受体的结构在分子水平甚至电子水平的全面准确了解进行基于结构的药物设计和通过对靶点的结构、功能、与药物作用方式及产生生理活性的机理的认识

2、基于机理的药物设计。CADD通过内源性物质或外源性小分子作为效应子作用于机体的靶点,考察其形状互补,性质互补,溶剂效应及运动协调性等进行分子设计。2、方法分类合理药物设计有基于靶点结构的三维结构搜索和全新药物设计等方法。后者分为模板定位法、原子生长法、分子碎片法。根据受体是否已知分为直接药物设计和间接药物设计。前者即通过结构测定已知受体或受体-配体复合物的三维结构,根据受体的三维结构要求设计新药的结构。受体结构测定方法:同源模建,X射线衍射,多维核磁共振技术。后者通过一些配体的结构知识推测受体的图像,提出假想受体,采用建立药效团模型或3D-QSAR和基于药效团模型的三维结构搜索等方法,间接进行

3、药物设计。三、计算化学计算化学包括分子模型、计算方法、计算机辅助分子设计、化学数据库及有机合成设计。计算方法基本上可分为两大类:分子力学和量子力学。常用的计算应用有:单点能计算:根据模型中原子的空间位置给出相应原子坐标的势能;几何优化:系统的修改原子坐标使原子的三维构象能量最小化;性质计算:预测某些物理化学性质,如电荷、偶极矩、生成热等;构象搜索:寻找能量最低的构象;分子动力学模拟:模拟分子的构象变化。方法选择主要有三个标准:模型大小;可用的参数;计算机资源四、计算化学中的基本概念1、坐标系统分为笛卡尔坐标和内坐标。前者适合于描述一系列的不同分子,多用于分子力学程序,有3N个坐标;后者常用于描

4、述单分子系统内各原子的相互关系,多用于量子力学程序,有3N-6个坐标。2、原子类型:用来标记原子属性。3、势能面体系能量的变化被认为能量在一个多维的面上运动,这个面被称为势能面。坐标上能量的一阶导数为零的点为定点。4、面积VanderWaals面积:原子以vanderWaals为半径的球的简单堆积。分子面积:试探分子在VanderWaals面积上滚动的面积。可接近面积:试探球在分子vanderWaals表面滚动时试探球原点处所产生的面积。5、单位:键长多用?,键能多用kcal/mol表示。五、计算机辅助药物设计软件及限制目前CADD存在的问题:蛋白质结构三维结构的真实性和可用性问题;受体-配体

5、相互作用的方式问题;设计的分子能否进行化学合成;药物体内转运、代谢和体内毒副作用问题等。分子力学是基于原子间存在化学键、非键原子之间的范德华及静电相互作用这一经典理论,通过分子几何、能量、振动光谱及其他物理性质的计算寻求分子的平衡构型及能量,确定有机分子的结构、构象、能量及动力学模型。其计算忽略了电子的贡献,只考虑核。计算较小仅与分子中原子数目的平方成正比。一般分子动力学软件提供三种位能面采样算法:单点:只是对位能面上某一点计算,给出该构象下的系统能量和梯度几何优化:对单点位能面采样,寻找梯度为零的构象,局部最小分子动力学:对势能面增加动能,导致分子系统按Newton定律运动,在势能低点运动加

6、快。主要用于能量最小化和构象搜索。受体结构已知,该法计算药物与受体的结合能;受体未知通过已知配体导出药效团模型。一、理论简介分子力学基本思想是通过选择一套势函数和从实验中得到的一套力常数,从给定的分子体系原子的空间坐标的初值,用分子力场描述的体系总能量对于原子坐标的梯度,通过多次迭代的数值算法来得到合理的分子体系的结构。分子的化学键具有一定的键长、键角,分子要调整它的几何形状,必须使其键长值和键角值尽可能接近标准值,同时非键作用能处于最小的状态,由这些键长和键角调节构象,给出核位置的最佳分布,即分子的平衡构型。分子力学优化只能是局部优化,若为了找到全局能量最低构象,须将所有可能的初始构象分别进

7、行优化,最后进行比较确定分子体系的最优构象。二、分子力场分子力学有能力处理大分子体系,它从经典力学的观点来描述分子中原子的拓扑结构,是通过分子立场这个分子模拟的基石实现的。如果一个解析表达式能拟合位能面,则此解析表达式就成为分子力场,亦即一个力场的确定就是选择解析函数形式和确定参数。分子力学用几个典型结构参数和作用力来描述结构的变化,由分子内相互作用和分子间相互作用构成。三、能量最小化按是否采用能量的导数分为两类:非导数法和导数法。一阶能量导数的方向指向能量最小化的点,梯度反映该点的陡度,有最陡下降法、共轭梯度法、任意步长逼近法;二阶能量导数预测何处能量梯度方向发生变化,有牛顿-拉普森法。SD

8、:梯度是进行搜索的方向,每次搜索之后旧的方向被新点处的梯度取代,适合优化最初段,尤其是减少大量的非键相互作用非常有用,适用于大分子。共轭梯度法:不仅运用当前梯度,也采用先前的最小化历史来确定下一步,收敛比SD快,用于大分子。Newton-Raphson法:原则上可一步收敛,但存储导数的矩阵太大,不适用于大体系。四、常用的分子力场以适合生物大分子的Amber和适合小分子的MM2为代表。MM3:MM力场对静电的相互作用采用键的偶极方法,对于极性或电荷系统不能充分模拟,适用于小非极性分子的结构和热动力学模拟。AMBER力场:广泛用于蛋白质和核酸,不适合用于小分子。OPLS力场:用于蛋白质和核酸,特别

9、适用在液相系统中模拟物理性质。CHARMM力场:适用于生物大分子,充分考虑溶剂和溶剂、溶质和溶质、溶剂和溶质之间的相互作用。BIO+力场:CHARMM力场的补充,采用CHARMM立场的参数,结果与CHARMM一样。MMFF94力场:运用凝聚态过程,适合大分子和小分子,且精确一致。Universal力场:针对整个周期表的分子力学和动态模拟力场,有过渡元素时的最佳选择。COMPASS力场五、分子动力学以牛顿力学为基础,把每个原子看做符合牛顿运动定律的粒子,在一定时间内,连续几分牛顿运动方程计算原子的位置和速度得出原子的运动轨道。分子动力学涉及Newton运动方程的积分,需要选取适当的时间步长,选取

10、的时间步长和运动的频率有关。分子动力学模拟经过三个阶段:加热、模拟、冷却。构建分子的时候是0K,缓慢加热到模拟温度。对室温下的模拟,梯度应小于3,是为了避免人为的在高能区产生的局部力使分子在张力较大的地方发生断裂或扭曲。在模拟期的平衡很重要,可以避免加热过程中引入人为因素。分子体系冷却可降低在较高温度时分子的张力,冷却过程也叫模拟退火,使分子从高能构象越过一定的能垒转向稳定的低能构象。分子动力学模拟溶剂的作用,可通过选择媒介的介电常数和周期边界条件模拟,水的介电常数。采用周期边界条件模拟是为了消除刚性壁边界条件和自然边界条件的表面效应。去顶八面体常用于球形分子。分子力学模拟一般都应先对分子进行

11、几何优化,在几何优化基础上再对分子进行动力学模拟。分子动力学的作用:分子动力学主要用于能量最小化,和分子力学的区别:分子力学不能越过一定的能垒,只是局部优化;分子动力学模拟则是全局优化低能构象。通过分子动力学模拟,可再现分子的各种构象形式,用于推测药物与受体相作用的构象。分子力学适合处理分子内张力或vdw力等分子处于非极性溶剂中,当考虑到极性溶剂或溶剂效应时,使用分子动力学方法,Montecarlo方法,Langevin动力学或模拟退火法。六、MonteCarlo方法利用随机取样处理问题的方法称为MonteCarlo方法,它是一种通过的采取随机数和概率统计进行猜测来研究问题。分子动力学不能越过

12、的能垒,MonteCarlo构象搜寻可以是跳跃式的,其优点是取样的构象恰当,对低能构象取样几率大。七、LangevinLangevin模拟是随机动力学模拟,通过给各原子分配分子在溶剂中与其他分子相互碰撞并随着在溶剂中运动产生的摩擦力的值进行模拟。Langevin动力学模拟只是对分子施加一个力模拟碰撞后的能量损失,所以不需要指明溶剂分子,多用于长链分子和聚合物。特别适用于研究溶剂中的大分子。八、构象分析描述分子结构的三个层次:分子构造,分子构型,分子构象。构象搜寻采用适当的方法产生各种不同的构象,并对这些构象进行能量最小化,比较这些构象并找出其中能量最低的构象。根据产生构象的方法不同,可分为系统

13、搜寻法和非系统搜寻两类。九、随机搜寻法模拟退火方法是分子动力学,MonteCarlo和Langevin动力学在模拟时采取温度缓慢降低的方法。它首先使体系升温,使分子体系有足够的能量,克服柔性分子中存在的各种旋转能垒和顺反异构能垒,搜寻全部构象空间,在构象空间中选出一些能量相对极小的构象,然后逐步降温,再进行分子动力学模拟,此时较高能垒已无法越过,在极小化后去除能量较高的构象,最后可以得到能量最小的优势构象。MonteCarlo退火方法采用MonteCarlo方法的Metropolis采样算法。在某温度下,体系有起始构象,构象发生微小的随机变化产生新的构象,相应的能量发生变化。如果能量差不大于零

14、则接受构象变化,新构象成为下一步的初始构象。如果能量大于零,选择一个随机数将其与原相比较,若能量小于零则接受,新的构象成为下一次随机变化的起始点;否则拒绝变化,老的构象仍是下一次随机变化的起始点。高温淬火动力学是高温分子动力学与能量最低化相结合来判断一系列构象的分布,往往还需要结合模拟退火。遗传算法算法步骤:随机产生初始群体,群体中个体以二进制序列标记计算适应值通过复制算子、杂交算子和变异算子产生新一代更具适应的群体。对于构象搜寻,染色体二进制序列的值表示分子可旋转的扭角。适应值为能量的函数。距离几何法该方法核心仍为随机技术。特别适用于导出大量信息无法手工解析的蛋白质与核酸的结构。一、量子化学

15、理论简介应用量子力学原理处理化学问题,形成分子轨道理论、价键理论与配位场理论。分子轨道理论在物理模型上有三个基本近似:非相对近似是电子在原子核附近运动而不被的原子核俘获,必须保持很高运动度。近似认为电子质量等于电子静止的质量,即电子质量恒为1个单位。Born-Oppenheimer近似是在计算分子总能量时,把电子的运动和核的运动分开处理,忽略贡献很小的电子态之间偶合项,即非绝热项,故又称绝热近似。单电子近似则认为电子波函数为n个电子所占据的轨道的乘积。自洽场:每一个电子的运动状态不仅受核力的作用,而且还要受其他n-1个电子所产生的势场的作用,这样在描述与电子势场时,必须考虑受作用的那一个电子状态和它本身作为其他电子运动时对势场的贡献要一致起来,即自洽起来。这样的势场,成为自洽场。1、Hartree-Fock方法固有近似性,它忽略了局部的电子-电子效应,即忽略了电子相关。因此常采取组态相互作用弥补这一缺点。组态指电子在其可能达到的各轨道上的排布方式的描述。通过用不同组态的波函数进行混合来表示分子的波函数称为组态相互作用。利用

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 总结/报告

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号