宝鸡市百容金属材料有限公司

上传人:bin****86 文档编号:59979169 上传时间:2018-11-13 格式:DOCX 页数:16 大小:24.27KB
返回 下载 相关 举报
宝鸡市百容金属材料有限公司_第1页
第1页 / 共16页
宝鸡市百容金属材料有限公司_第2页
第2页 / 共16页
宝鸡市百容金属材料有限公司_第3页
第3页 / 共16页
宝鸡市百容金属材料有限公司_第4页
第4页 / 共16页
宝鸡市百容金属材料有限公司_第5页
第5页 / 共16页
点击查看更多>>
资源描述

《宝鸡市百容金属材料有限公司》由会员分享,可在线阅读,更多相关《宝鸡市百容金属材料有限公司(16页珍藏版)》请在金锄头文库上搜索。

1、为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划宝鸡市百容金属材料有限公司ICS12)3)3)Q/GDW中、韩、日金属材料牌号对照桂林大宇客车有限公司发布Q/GDW0111XX目次前言.II1范围.12引用标准.13材料对照表.1IQ/GDW0111XX前言为了便于熟悉常用的韩国、日本等国外金属材料标准。本标准参照韩国、日本等国外与内国钢铁产品表示方法进行对比编制。本标准由技术研究所提出。本标准主要起草人:卢福华本标准审核人:罗克军、刘运强。本标准由技术研究所所长许伦斌批准。本标准由技术研究所技术管理科归口。IIQ/GDW0111

2、XX中、韩、日金属材料牌号对照1范围本标准参照韩国、日本等国外与内国钢铁产品牌号表示方法进行编制。本标准适用于本公司常用金属材料与韩国常用金属材料牌号进行对照。本标准不适用于涉外图纸标题及涉外文件和资料中的金属材料牌号对照。2引用标准本标准参照1.中国与世界主要工业国家钢铁牌号对照手册、2.常用金属材料手册-中标准出版社(XX)中的标准、3.世界有色金属牌号手册、4.韩国提供的有关资料进行对应编制。3金属材料牌号对照表1金属零件3D打印技术现状及研究进展摘要:简述了国内外的金属零件3D打印技术的研究现状及最新进展,包括选区激光烧结、直接金属粉末激光烧结(DirectMetalLaserSint

3、ering,DMLS)、选区激光熔化技术、激光近净成形技术和电子束选区熔化技术,具体介绍了金属零件3D打印技术研究热点和难点以及具体应用,并对SLM技术现状、存在问题和发展趋势进行了分析。关键词:金属零件3D打印;选区激光熔化;直接制造TheStatusandProgressofManufacturingofMetalPartsby3DPrintingTechnologyAbstract:Thispaperpresentstheresearchstatusandnewprogressofthemetalpartsmanufacturedby3DPTechnologies,includingSe

4、lectiveLaserSintering,DirectMetalLaserSintering,SelectiveLaserMelting(SLM),LaserEngineeredNetShaping(LENS)andElectronBeamSelectiveMelting(EBSM).Atlast,theauthorsanalyzethemainresearchhotspots,problemsandorientedapplicationsofmetalpartsmanufacturedby3DPTechnologiesindetail,Thestatus-in-art,problemsan

5、ddevelopingprospectofthesetechnologyarealsodiscussed.Keywords:metalparts3DPtechnologies;selectivelasermelting;directmanufacturing1.引言3D打印技术正在快速改变传统的生产方式和生活方式,作为战略性新兴产业,美国、德国等发达国家高度重视并积极推广该技术。不少专家认为,以数字化、网络化、个性化、定制化为特点的3D打印技术为代表的新制造技术将推动第三次工业革命。3D打印技术,就是在计算机中将3DCAD模型分成若干层,通过3D打印设备在一个平面上按照3DCAD层图形,将塑料

6、、金属甚至生物组织活性细胞等材料烧结或者黏合在一起,然后再一层一层的叠加起来。通过每一层不同的图形的累积,最后形成一个三维物体金属零件3D打印技术作为整个3D打印体系中最为前沿和最有潜力的技术,是先进制造技术的重要发展方向。随着科技发展及推广应用的需求,利用快速成型直接制造金属功能零件成为了快速成型主要的发展方向。目前可用于直接制造金属功能零件的快速成型方法主要有:包括选区激光烧结技术、直接金属粉末激光烧结(DirectMetalLaserSintering,DMLS)、选区激光熔化技术、激光近净成形技术和电子束选区熔化技术,。国外对金属零件3D打印技术的理论与工艺研究相对较早,且在近几年已有

7、多家公司推出商品化的设备。而国内的研究主要集中在基础的工艺,华南理工大学的研究重点是SLM技术,清华大学以EBM技术为主,南京航空航天大学和华中科技大学主要研究选区激光烧结技术,近期也涉及到SLM工艺。西北工业大学深入研究了LENS工艺。本文就直接制造金属功能零件的快速成型的主要方法进行了归纳总结。2.金属零件快速制造技术分类选区激光烧结选择性激光烧结技术(SLS)最初是由美国德克萨斯大学奥斯汀分校的CarlDeckard于1989年在其硕士论文中提出的,选区激光烧结,顾名思义,所采用的冶金机制为液相烧结机制,成形过程中粉体材料发生部分熔化,粉体颗粒保留其固相核心,并通过后续的固相颗粒重排、液

8、相凝固粘接实现粉体致密化。美国DTM公司于1992年推出了该工艺的商业化生产设备SinterSation。德国的EOS公司在这一领域也做了很多研究工作,并开发了相应的系列成型设备。国内有如华中科技大学、南京航空航天大学、西北工业大学、中北大学和北京隆源自动成型有限公司等,多家单位进行SLS的相关研究工作,也取得了重大成果。SLS技术原理及其特点整个工艺装置由粉末缸和成型缸组成,工作粉末缸活塞(送粉活塞)上升,由铺粉辊将粉末在成型缸活塞(工作活塞)上均匀铺上一层,计算机根据原型的切片模型控制激光束的二维扫描轨迹,有选择地烧结固体粉末材料以形成零件的一个层面。完成一层后,工作活塞下降一个层厚,铺粉

9、系统铺上新粉,控制激光束再扫描烧结新层。如此循环往复,层层叠加,直到三维零件成型。图1SLS工艺采用半固态液相烧结机制,粉体未发生完全熔化,虽可在一定程度上降低成形材料积聚的热应力,但成形件中含有未熔固相颗粒,直接导致孔隙率高、致密度低、拉伸强度差、表面粗糙度高等工艺缺陷,在SLS半固态成形体系中,固液混合体系粘度通常较高,导致熔融材料流动性差,将出现SLS快速成形工艺特有的冶金缺陷“球化”效应。球化现象不仅会增加成形件表面粗糙度,更会导致铺粉装置难以在已烧结层表面均匀铺粉后续粉层,从而阻碍SLS过程顺利开展。由于烧结好的零件强度较低,需要经过后处理才能达到较高的强度并且制造的三维零件普遍存在

10、强度不高、精度较低及表面质量较差等问题。在SLS出现初期,相对于其他发展比较成熟的快速成型方法,选择性激光烧结具有成型材料选择范围广,成型工艺比较简单等优点。但由于成型过程中的能量来源为激光,激光器的应用使其成型设备的成本较高,随着XX年之后激光快速成形设备的长足进步,粉体完全熔化的冶金机制被用于金属构件的激光快速成形。选择性激光烧结技术(SLS)已被类似更为先进的技术代替。直接金属激光成形SLS制造金属零部件,通常有两种方法,其一为间接法,即聚合物覆膜金属粉末的SLS;其二为直接法,即直接金属粉末激光烧结(DirectMetalLaserSintering,DMLS)。自从1991年金属粉末

11、直接激光烧结研究在Leuvne的Chatofci大学开展以来,利用SLS工艺直接烧结金属粉末成形三维零部件是快速原型制造的最终目标之一。与间接SLS技术相比,DMLS工艺最主要的优点是取消了昂贵且费时的预处理和后处理工艺步骤。直接金属粉末激光烧结(DMLS)的特点DMLS技术作为SLS技术的一个分支,原理基本相同。但DMLS技术精确成形形状复杂的金属零部件有较大难度,归根结底,主要是由于金属粉末在DMLS中的“球化”效应和烧结变形,球化现象,是为使熔化的金属液表面与周边介质表面构成的体系具有最小自由能,在液态金属与周边介质的界面张力作用下,金属液表面形状向球形表面转变的一种现象.球化会使金属粉

12、末熔化后无法凝固形成连续平滑的熔池,因而形成的零件疏松多孔,致使成型失败,由于单组元金属粉末在液相烧结阶段的粘度相对较高,故“球化”效应尤为严重,且球形直径往往大于粉末颗粒直径,这会导致大量孔隙存在于烧结件中,因此,单组元金属粉末的DMLS具有明显的工艺缺陷,往往需要后续处理,不是真正意义上的“直接烧结”。为克服单组元金属粉末DMLS中的“球化”现象,以及由此造成的烧结变形、密度疏松等工艺缺陷,目前一般可以通过使用熔点不同的多组元金属粉末或使用预合金粉末来实现。多组分金属粉末体系一般由高熔点金属、低熔点金属及某些添加元素混合而成,其中高熔点金属粉末作为骨架金属,能在DMLS中保留其固相核心;低

13、熔点金属粉末作为粘结金属,在DMLS中熔化形成液相,生成的液相包覆、润湿和粘结固相金属颗粒,以此实现烧结致密化。直接金属粉末激光烧结(DMLS)的问题作为SLS技术的一个重要分支的DMLS技术尚处在不断发展和完善的过程之中,其烧结的物理过程及烧结致密化机理仍不明了,不同金属粉末体系的激光烧结工艺参数仍需摸索,专用粉末的研制与开发还有待突破。因此,建立金属粉末直接激光烧结过程的数学、物理模型,定量研究DMLS烧结致密化过程中的烧结行为和组织结构变化,成为粉末冶金科学与工程研究中的重要内容之一。DMLS中,金属粉末的物性对于烧结质量有着及其重要的影响,相同的工艺参数条件下,不同的粉末体系的烧结效果

14、往往有很大的区别。把握粉末体系的物性,为其选择最优化的工艺参数,是DMLS的最基本、最重要的要求。大量研究表明,影响DMLS质量的三个关键物性参数主要为:烧结特性、摊铺特性和稳定性。选区激光熔化SLM的思想最初由德国Fraunhofer研究所于1995年提出,XX年该研究所对SLM技术的研究取得巨大的成功。世界上第一台SLM设备由英国MCP集团公司下辖的德国MCP-HEK分公司已于XX年底推出。为获取全致密的激光成形件,同时也受益于XX年之后激光快速成形设备的长足进步,粉体完全熔化的冶金机制被用于金属构件的激光快速成形。例如,德国著名的快速成形公司EOS公司,是世界上较早开展金属粉末激光烧结的专业化公司,主要从事SLS金属粉末、工艺及设备研发。而该公司新近研发的EOSINTM270/280型设备,虽继续沿用“烧结”这一表述,但已装配200W光纤激光器,并采用完全熔化的冶金机制成形金属构件,成形性能得以显著提高。目前,作为SLS技术的延伸,SLM术正在德国、英国等欧洲国家蓬勃发展。即便继续沿用“选区激光烧结”这一表述,实际所采用的成形机制已转变为粉体完全熔化机制。选区激光熔化的原理SLM技术是在SLS基础上发展起来的,二者的基本原理类似。SLM技术需要使金属粉末完全熔化,直接成型金属件,因此需要高

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 总结/报告

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号