学科前沿讲座核电站材料

上传人:bin****86 文档编号:59973071 上传时间:2018-11-13 格式:DOCX 页数:25 大小:31.65KB
返回 下载 相关 举报
学科前沿讲座核电站材料_第1页
第1页 / 共25页
学科前沿讲座核电站材料_第2页
第2页 / 共25页
学科前沿讲座核电站材料_第3页
第3页 / 共25页
学科前沿讲座核电站材料_第4页
第4页 / 共25页
学科前沿讲座核电站材料_第5页
第5页 / 共25页
点击查看更多>>
资源描述

《学科前沿讲座核电站材料》由会员分享,可在线阅读,更多相关《学科前沿讲座核电站材料(25页珍藏版)》请在金锄头文库上搜索。

1、为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划学科前沿讲座核电站材料材料学科前沿讲座论文班级:材料10-7姓名:XXX学号:XXX中国矿业大学学科前沿讲座纳米材料在来矿大之前对材料没有多少认识,只知道他与物理化学联系较为紧密,是新世纪的主导学科!所以就选择了材料!在听教授们上完那个学科前沿讲座之后,我对自己的专业才有了一个初步的了解,尤其对纳米材料感触极深!21世纪是高新技术的世纪,信息、生物和新材料代表了高新技术发展的方向。在信息产业如火如荼的今天,新材料领域有一项技术引起了世界各国政府和科技界的高度关注,这就是纳米科技。处于

2、新材料科技前沿的纳米科技,它的应用领域非常广泛。应用于制造业,现在已经造出只有米粒大小且能开动的汽车、只有蜜蜂大小的直升机。应用于生物医学,可以制出只有几毫米的人造手,帮助医生实施虚拟的现实手术。有人预言,处于2l世纪高新技术前沿和核心地位的纳米科技所引起的世界性技术革命和产业革命对社会经济、政治、国防等所产生的冲击,将比以往的技术革命时代带来的影响更为巨大。纳米科技将会掀起新一轮的技术浪潮,领导下一场工业革命。人类将进入一个新的时代-纳米科技时代。1.纳米科技的基本概念和内涵1959年,著名的理论物理学家、诺贝尔奖金获得者费曼曾预言:“毫无疑问,当我们得以对细微尺度的事物加以操纵的话。将大大

3、扩充我们可能获得物性的范围。”在这里,通常界定为1100nm的范围内纳米体系是细微尺度的事物的主角。纳米科学技术是20世纪80年代末期刚刚诞生并正在崛起的新科技,他的基本涵义是在纳米尺寸(10-910-7m)范围内认识和改造自然,通过直接操作和安排原子、分子创制新的物质。早在1959年,美国著名的物理学家,诺贝尔奖获得者费曼就设想:“如果有朝一日人们能把百科全书存储在一个针尖大小的空间内并能移动原子,那么这将给科学带来什么!”这正是对纳米科技的预言,也就是人们常说的小尺寸大世界.纳米科技是研究由尺寸在1100nm之间的物质组成的体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术纳

4、米科技主要包括:(1)纳米体系物理学;(2)纳米化学;(3)纳米材料学;(4)纳米生物学;(5)纳米电子学;(6)纳米加工学;(7)纳米力学。这7个部分是相对独立的。隧道显微镜在纳米科技中占有重要的地位,它贯穿到7个分支领域中,以扫描隧道显微镜为分析和加工手段所做工作占有一半以上。纳米科学所研究的领域是人类过去从未涉及的非宏观、非微观的中间领域,从而开辟人类认识世界的新层次,也使人们改造自然的能力直接延伸到分子、原子水平,这标志着人类的科学技术进入了一个新时代,即纳米科技时代。以纳米新科技为中心的新科技革命必待成为21世纪的主导。纳米新科技诞生才几十年,就在几个重要的方面有了如下的重要进展:(

5、1)美国商用机器公司两名科学家利用扫描隧道电子显微镜直接操作原子,成功地在Ni(镍)基板上,按自己的意志安排原子组合成“IBM”字样,日本科学家已成功地将硅原子堆成一个“金字塔”,首次实现了原子三维空间立体搬迁1991年IBM的科学家还制造了超快的氙原子开关专家们预计,这一突破性的纳米新科技研究工作将可能使美国国会图书馆的全部藏书存储在一个直径仅为的硅片上据英国科学与共同政策杂志报道,科学家们最近制造出一种尺寸只有4nm的复杂分子,具有“开”和“关”的特性,可由激光计算机提供可能的技术保证。(2)近年来刚刚发展起来的纳米材料出现许多传统材料不具备的奇异特性,已引起科学家的极大兴趣德国萨尔大学格

6、菜德和美国阿贡国家实验室席格先后研究成功纳米陶瓷氟化钙和二氧化钛,在室温下显示良好的韧性,在180经受弯曲并不产生裂纹,这一突破性进展,使那些为陶瓷增韧奋斗将近一个世纪的材料科学家们看到希望英国著名材料科学家卡恩在从Nature杂志上撰文说:“纳米陶瓷是解决陶瓷脆性的战略途径。”纳米材料在光吸收、催化、敏感特性和磁性方面都表现出明显不同于同类传统材料的特性,在高技术应用上显示出广阔的应用前景。(3)作为纳米科学技术的另一个重要分支,即纳米生物学在90年代初露头角,面向2l世纪,它的发展前途方兴末艾纳米生物学在纳米尺度上认识生物大分子的精细结构及其与功能的联系,并在此基础上按自己的意愿进行裁剪和

7、嫁接,制造具有特殊功能的生物大分子,这使生命科学的研究上了一个新的台阶。(4)纳米微机械和机器人是十分引人注目的研究方向。纳米生物机器和纳米生物部件零件的研制,用原子和分子直接组装成纳米机器不但其速度、效率比现有机器大大提高,而且应用范围之广,功能之特殊、污染程度之低是现有机器人无法比拟的。纳米生物“部件”与纳米无机化合物及晶体结构“部件”相组合,用纳米微电子学控制形成纳米机器人,尺寸比人体红血球小,这种纳米机器人的问世特使未来高技术出现新的飞跃,人类的医疗也因之发生深刻的革命,许多疑难病症将得到解决。医生可能应用纳米机器人直接打通脑血栓,清出心脏动脉脂肪沉积物,也可以通过把多种功能纳米微型机

8、器注入血管内,进行人体全身检查和治疗。药物也可以制成纳米尺寸,直接注射到病灶部位,大大提高医疗效果,减少副作用。目前,纳米科学技术正处于重大突破的前期,它取得的成绩已经使人们为之震动,并引起关心未来发展的科学家们的思考。2.纳米材料和技术领域研究的对象和发展的历史。纳米材料和技术是纳米科技领域最富有活力、研究内涵十分丰富的学科分支。“纳米”是一个尺度的度量,最早把这个术语用到技术上是日本在1974年底,但是以“纳米”来命名的材料是在20世纪80年代,它作为一种材料的定义把纳米颗粒限制到1100nm范围、实际上,对这一范围的材料的研究还更早一些。在纳米材料发展初期,纳米材料是指纳米颗粒和由它们构

9、成的纳米薄膜和固体现在,广义地,纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。如果按维数,纳米材料的基本单元可以分为三类:(1)零维,指在空间三维尺度均在纳米尺度,如纳米尺度颗粒、原子团簇等;(2)一维,指在空间有两维处于纳米尺度,如纳米丝、纳米棒、纳米管等;(3)二维,指在三维空间中有一维在纳米尺度,如超薄膜,多层膜;超晶格等。纳米材料大部分都是用人工制备的,属于人工材料,但是自然界中早就存在纳米微粒和纳米团体。例如天体的陨石碎片,人体和兽类的牙齿都是由纳米微粒构成的。此外,浩瀚的海洋就是一个庞大超微粒的聚集场所,原先认为海洋中非生命的亚微米的粒子(1m)

10、具有很丰富的浓度,约为106107个/ml最近,威尔斯等人在南太平洋发现小于120nm的海洋胶体粒子的浓度至少是亚微米粒子的3倍,而且深度分布奇特,通过对这些纳米粒子的研究,可以了解海洋、生命的起源以及获取开发海洋资源的信息纵观纳米材料发展的历史大致可以划分为3个阶段:第一阶段(1990年以前)主要是在实验室探索用各种手段制备各种材料的纳米颗粒粉体,合成块体(包括薄膜),研究评估表征的方法,探索纳米材料不同于常规材料的特殊性能对纳米颗粒和纳米块体材料结构的研究在20世纪80年代末期一度形成热潮。研究的对象一般局限在单一材料和单相材料,国际上通常把这类纳米材料称纳米晶或纳米相材料。第二阶段(19

11、94年前)人们关注的热点是如何利用纳米材料已挖掘出来的奇特物理、化学和力学性能,设计纳米复合材料,通常采用纳米微粒与纳米微粒复合(00复合),纳米微粒与常规块体复合(03复合)及发展复合纳米薄膜(02复合),国际上通常把这类材料称为纳米复合材料这一阶段纳米复合材料的合成及物性的探索一度成为纳米材科研究的主导方向。第三阶段(从1994年到现在)纳米组装体系、人工组装合成的纳米结构的材料体系越来越受到人们的关注或者称为纳米尺度的图案材料它的基本内涵是以纳米颗粒以及纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系,其中包括纳米阵列体系、介孔组装体系、薄膜嵌镶体系纳米颗粒、丝、管

12、可以是有序地排列。如果说第一阶段和第二阶段的研究在某种程度上带有一定的随机性,那么这一阶段研究的特点要强调按人们的意愿设计、组装、创造新的体系,更有目的地使该体系具有人们所希望的特性。3.纳米材料与其他学科的交叉、渗透纳米材料科学是原子物理、凝聚态物理、胶体化学、团体化学、配位化学、化学反应动力学和表面、界面科学等多种学科交叉汇合而出现的新学科生长点。纳米材料中涉及的许多未知过程和新奇现象,很难用传统物理、化学理论进行解释从某种意义上来说,纳米材料研究的进展势必把物理、化学领域的许多学科推间一个新层次,也会给21世纪物理、化学研究带来新的机遇。纳米材料为凝聚态物理提出许多新的课题,由于纳米材料

13、尺寸小,可与电子的德布罗意波长、超导相干波长及激子玻尔半径相比拟,电子被局限在一个体积十分微小的纳米空间,电子运输受到限制,电子平均自由程很短,电子的局域性和相干性增强,尺度下降使纳米体系包含酌原子数大大降低;宏观固定的准连续能带消失了,而表现为分立的能级,量子尺寸效应十分显著。纳米材料在催化反应中具有重要作用通常的金属催化剂铁、钴、镍、铂制成纳米微粒可大大改善催化效果粒径为30nm的镍可把有机化学加氢和脱氢反应速度提高15倍在环二烯的加氢反应中,纳米微粒做催化剂比一般催化剂的反应速度提高1015倍在甲醛的氢化反应生成甲醇的反应中,以氧化钛、氧化硅、氧化镍加上纳米微粒镍、铷,反应速度大大提高,

14、如果氧化硅等粒径达到纳米级,其选择性可提高5倍通过光催化从水、二氧化碳和氯气中提取有用物质例如,液体燃料一直是人们研究的重要课题,最近日本利用纳米铂作为催化剂放在氧化钛的载体上,在加入甲醇的水溶液中通过光照射成功地制取了氢,产出率比原来提高几十倍纳米微粒对提高催化反应效率、优化反应路径、提高反应速度和定向方面的研究是未来催化科学的重要研究课题,很可能给催化在工业应用带来革命性的变革。纳米合成为发展新型材料提供新的途径和新的思路非平衡动态的材科工艺学在21世纪将会有新的突破目前,在世界上的材料有近百万种,而自然的材料仅占1/20,这就说明人工材料在材料科学发展中占有重要地位纳米尺度的合成为人们设

15、计新型材料,特别是为人类按照自己的意愿设计和探索所需要的新型材料打开了新的大门例如,在传统相图中根本不共溶的两种元素或化合物,在纳米态下可以形成固溶体,制造出新型的材料铁铝合金、银铁和钢铁合金等纳米材料已在实验室获得成功。利用纳米微粒的特性,人们可以合成原子排列状态完全不同的两种或多种物质的复合材料人们还可以把过去难以实现的有序相和无序相、晶态相和金属玻璃、铁磁相和反铁磁相、铁电相和顺电相复合在一起,制备出有特殊性能的新材料。纳米材料的诞生也为常规的复合材料的研究增添了新的内容把金属的纳米微粒加入常规陶瓷中可大大改善材料的力学性质,如纳米氧化铝粒子放入橡胶中可提高橡胶的介电性和耐磨性,放入金属或合金中可以使晶粒细化,大大改善力学性质;纳米氧化铝弥散到透明的玻璃中既不影响透明度又提高了高温冲击韧性;纳米磁性氧化物粒子与高聚物或其他材料复合具有良好的微波吸收特性。纳米氧化铝微粒放入有机玻璃(PMMA)中表现出良好的宽频带红外吸收性能纳米粒子与纳米粒子复合,受到世界各国极大的重视英国制定了一个很大的纳米材料发展计划,重点制备纳米氧化铝+纳米氧化锆,纳米氧化铝+纳米氧化硅,纳米氧化铝+纳米氮化硅或碳化硅等新型纳米复合陶瓷。纳米材料与医学药物领域的交叉是必然的发展趋势美国MIT己成功研究了以纳米磁性材料为药物载体

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 总结/报告

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号