合成材料怎样合成

上传人:bin****86 文档编号:59870984 上传时间:2018-11-12 格式:DOCX 页数:24 大小:27.83KB
返回 下载 相关 举报
合成材料怎样合成_第1页
第1页 / 共24页
合成材料怎样合成_第2页
第2页 / 共24页
合成材料怎样合成_第3页
第3页 / 共24页
合成材料怎样合成_第4页
第4页 / 共24页
合成材料怎样合成_第5页
第5页 / 共24页
点击查看更多>>
资源描述

《合成材料怎样合成》由会员分享,可在线阅读,更多相关《合成材料怎样合成(24页珍藏版)》请在金锄头文库上搜索。

1、为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划合成材料怎样合成纳米材料的制备及研究学院:冶金与生态学院班级:冶研XX-1姓名:陈立平学号:SXX0260摘要:纳米技术正以惊人的速度发展并改变着社会生产和人们生活的方式。本文从纳米材料的定义、分类和特性出发,综述了纳米技术及纳米材料制备技术的研究进展,探讨了存在的问题,展望了其应用。关键词:纳米材料;纳米技术;研究Abstract:Nanotechnologyisdevelopingatamazingspeed,anditisalsochangingthewayofsocialpr

2、oductionandpeopleslife.Thispapersummarizedthestudyprogressonnanotechnologyandnanomateralatthebeginningofnanotechnologicaldefinition,classificationandspecialproperties.Theexistingproblemswerediscussed,andthefuturewasprospectedaswell.Keywords:nanomateral;nanotechnology;research1前沿纳米材料和纳米科技被广泛认为是二十一世纪最

3、重要新型材料和科技领域之一。早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。1992年,NanostructuredMaterials正式出版,标志着纳米材料学成为一门独立的科学。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具

4、有特殊的电、光、机械和热性质而受到人们越来越多的重视。美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目1。所以,纳米材料的制备在当前材料科学研究中占据极为重要的位置,新的材料制备工艺和过程的研究对纳米材料的微观结构和性能具有重要的影响。制备出清洁、成分可控、高密度(不含微孔隙)的粒度均匀的纳米材料是制备合成工艺研究的目标。因此,如何控制及减少纳米材料尤其是界面的化学成分及均匀性、以及如何控制晶粒尺寸分布是制备工艺研究的主要课题2。2纳米材料的特性及其特性3“纳米材料”的命名出现在20世纪80年代,它是指三维空间中至

5、少有一维处于1nm-100nm或由它们作为基体单元构成的材料。纳米材料的分类纳米材料按维数可分为三类:(1)零维,如纳米尺度颗粒、原子团簇等;(2)一维,如纳米丝、纳米棒、纳米管等;(3)二维,如超薄膜、多层膜、超晶格等。按照形态一般分为四类:(1)纳米颗粒型材料;(2)纳米固体材料;(3)颗粒膜材料;(4)纳米磁性液体材料。纳米材料的特性纳米材料具有普通材料所不具备的三大效应:(1)小尺寸效应,指当纳米粒子的尺寸与传统电子的德布罗意波长以及超导体的相干波长等物理尺寸相当或更小时,其周期性的边界条件将被破坏,光吸收、电磁、化学活性、催化等性质发生很大变化的效应。(2)表面效应,可用纳米微粒表面

6、原子与总原子数之比来量度。随着粒径减小,表面原子数迅速增加。由于表面原子数增加,原子配位不足及高的表面能,使得这些表面原子具有高的活性,极不稳定,使其在催化、吸附等方面具有常规材料无法比拟的优越性。(3)宏观量子隧道效应。研究发现,一些宏观量,如纳米粒子的磁化强度、量子相干器件中的磁通量也具有隧道效应,称为宏观量子隧道效应。由于纳米材料具有以上的三大效应,才使它表现出令人难以置信的奇特的宏观物理特性:(1)高强度和高韧性;(2)高热膨胀系数、高比热容和低熔点;(3)异常的导电率和磁化率;(4)极强的吸波性;(5)高扩散性等。3国内外纳米材料制备方法研究现状3国内外纳米材料的制备方法比较成熟,不

7、外乎物理方法和化学方法两种。物理方法机械法机械法有机械球磨法、机械粉碎法以及超重力技术。机械球磨法无需从外部供给热能,通过球磨让物质使材料之间发生界面反应,使大晶粒变为小晶粒,得到纳米材料。范景莲等采用球磨法制备了钨基合金的纳米粉末。xiao等利用金属羰基粉高能球磨法获得纳米级的Fe-18Cr-9W合金粉末。机械粉碎法是利用各种超微粉机械粉碎和电火花爆炸等方法将原料直接粉碎成超微粉,尤其适用于制备脆性材料的超微粉。超重力技术利用超重力旋转床高速旋转产生的相当于重力加速度上百倍的离心加速度,使相间传质和微观混合得到极大的加强,从而制备纳米材料。刘建伟等以氨气和硝酸锌为原料,应用超重力技术制备粒径

8、20nm-80nm、粒度分布均匀的ZnO纳米颗粒。气相法气相法包括蒸发冷凝法、溶液蒸发法、深度塑性变形法等。蒸发冷凝法是在真空或惰性气体中通过电阻加热、高频感应、等离子体、激光、电子束、电弧感应等方法使原料气化或形成等离子体并使其达到过饱和状态,然后在气体介质中冷凝形成高纯度的纳米材料。Takaki等在惰性气体保护下,利用气相冷凝法制备了悬浮的纳米银粉。杜芳林等制备出了铜、铬、锰、铁、镍等纳米粉体,粒径在30nm#50nm范围内可控。魏胜用蒸发冷凝法制备了纳米铝粉。溶液蒸发法是将溶剂制成小滴后进行快速蒸发,使组分偏析最小,一般可通过喷雾干燥法、喷雾热分解法或冷冻干燥法加以处理。深度塑性变形法是

9、在准静态压力的作用下,材料极大程度地发生塑性变形,而使尺寸细化到纳米量级。有文献报道,82mm的Ge在6GPa准静压力作用后,再经850热处理,纳米结构开始形成,材料由粒径100nm的等轴晶组成,而温度升至900时,晶粒尺寸迅速增大至400nm。磁控溅射法与等离子体法溅射技术是采用高能粒子撞击靶材料表面的原子或分子,交换能量或动量,使得靶材料表面的原子或分子从靶材料表面飞出后沉积到基片上形成纳米材料。在该法中靶材料无相变,化合物的成分不易发生变化。目前,溅射技术已经得到了较大的发展,常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。等离子体法是利用

10、在惰性气氛或反应性气氛中通过直流放电使气体电离产生高温等离子体,从而使原料溶液化合蒸发,蒸汽达到周围冷却形成超微粒。等离子体温度高,能制备难熔的金属或化合物,产物纯度高,在惰性气氛中,等离子法几乎可制备所有的金属纳米材料。以上介绍了几种常用的纳米材料物理制备方法,这些制备方法基本不涉及复杂的化学反应,因此,在控制合成不同形貌结构的纳米材料时具有一定的局限性。化学制备方法溶胶-凝胶法溶胶-凝胶法的化学过程首先是将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶。Stephen等利用高分子加成物(由烷基金属和含N聚合物组成)在溶液中与H

11、2S反应,生成的ZnS颗粒粒度分布窄,且被均匀包覆于聚合物基体中,粒径范围可控制在2nm-5nm之间。MarcusJones等以CdO为原料,通过加入Zn(CH3)2和SSi(CH3)32制得了ZnS包裹的CdSe量子点,颗粒平均粒径为,量子产率(quantumyield,QY)为%。离子液法离子液作为一种特殊的有机溶剂,具有独特的物理化学性质,如粘度较大、离子传导性较高、热稳定性高、低毒、流动性好以及具有较宽的液态温度范围等。即使在较高的温度下,离子液仍具有低挥发性,不易造成环境污染,是一类绿色溶剂。因此,离子液是合成不同形貌纳米结构的一种良好介质。Jiang等以BiCl3和硫代乙酰胺为原料

12、,在室温下于离子液介质中合成出了大小均匀的、尺寸为3um-5um的Bi2S3纳米花。他们认为溶液的pH值、反应温度、反应时间等条件对纳米花的形貌和晶相结构有很重要的影响。他们证实,这些纳米花由直径60nm-80nm的纳米线构成,随老化时间的增加,这些纳米线会从母花上坍塌,最终形成单根的纳米线。赵荣祥等采用硝酸铋和硫脲为先驱原料,以离子液为反应介质,合成了单晶Bi2S3纳米棒5,6。溶剂热法溶剂热法是指在密闭反应器(如高压釜)中,通过对各种溶剂组成相应的反应体系加热,使反应体系形成一个高温高压的环境,从而进行实现纳米材料的可控合成与制备的一种有效方法Lou等采用单源前驱体BiS2P(OC8H17

13、)23作反应物,用溶剂热法制得了高度均匀的正交晶系Bi2S3纳米棒,且该方法适于大规模生产。Liu等用Bi(NO3)35H2O、NaOH及硫的化合物为原料,甘油和水为溶剂,采用溶剂热法在高压釜中160反应24-72h制得了长达数毫米的Bi2S3纳米带。微乳法微乳液制备纳米粒子是近年发展起来的新兴的研究领域,具有制得的粒子粒径小、粒径接近于单分散体系等优点。1943年Hoar等人首次报道了将水、油、表面活性剂、助表面活性剂混合,可自发地形成一种热力学稳定体系,体系中的分散相由80nm-800nm的球形或圆柱形颗粒组成,并将这种体系定名微乳液。自那以后,微乳理论的应用研究得到了迅速发展。1982年

14、,Boutonnet等人应用微乳法,制备出Pt、Pd等金属纳米粒子。微乳法制备纳米材料,由于它独特的工艺性能和较为简单的实验装置,在实际应用中受到了国内外研究者的广泛关注。4纳米材料制备存在的问题3现有纳米材料的制备技术还不成熟,对制备技术中具体工艺条件的研究还很不够,已取得的成果仅停留在实验室和小规模生产阶段,对工业化生产实施将涉及的问题,目前研究的很少,纳米材料实用化技术的研究不够系统和深入,现有工业化生产的设备有待进一步的研究和改进,以提高微粒的产率、产量并降低成本。5我国纳米技术现状及对策4目前我国纳米技术的应用成了热门,国内已有60多个研究小组,近600多人从事纳米材料的基础和应用研

15、究。30多条纳米材料的生产线,先后采用多种物理、化学方法制备出金属与合金、氧化物、氮化物、碳化物等纳米粉体。建立了相应的设备体系,制成了纳米薄膜和块料,成功研制出致密度高、形状复杂、性能优越的纳米陶瓷,设计和制备了纳米复合氧化物新体系等。然而纳米科技的产业化还不太理想,许多科研院所的纳米科技还停留在研发中。要将成果转化为生产力,尚需进一步努力。为此,应重视如下几方面的工作:(1)重视纳米材料的基础研究和应用开发研究;(2)组织多学科的科技人员交叉创新,重视技术集成;(3)重视纳米材料的发展对传统产品的改造,提高技术含量;(4)加强纳米医学、纳米生物学和纳米电子学3方面的研究;诺贝尔奖获得者罗雷尔曾说过:70年代重视微米的国家如今都成为发达国家,现在重视纳米技术的国家很可能成为下一世纪先进的国家。挑战严峻、机遇难得,我们必须加倍重视纳米技术的研究,加快科技成果转化为生产力的步伐,为21世纪中国纳米科学技术的大发展奠定坚实的基础。第1章溶胶凝胶法(Sol-gelmethod)?胶体:分散相粒径很小的胶体体系,分散相质量忽略不计,分子间作用力主要为短程作用力.?溶胶是具有液体特征的胶体体系,分散的粒子是固体或者大分子,分散的粒子大小在1100nm之间。?凝胶是具有固体特征的胶体体系,被分散的物质形成连续的网状骨架,骨架空隙中

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 总结/报告

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号