20149焊接冶金学——材料焊接性第3章

上传人:xy****7 文档编号:59635556 上传时间:2018-11-09 格式:PPT 页数:95 大小:279KB
返回 下载 相关 举报
20149焊接冶金学——材料焊接性第3章_第1页
第1页 / 共95页
20149焊接冶金学——材料焊接性第3章_第2页
第2页 / 共95页
20149焊接冶金学——材料焊接性第3章_第3页
第3页 / 共95页
20149焊接冶金学——材料焊接性第3章_第4页
第4页 / 共95页
20149焊接冶金学——材料焊接性第3章_第5页
第5页 / 共95页
点击查看更多>>
资源描述

《20149焊接冶金学——材料焊接性第3章》由会员分享,可在线阅读,更多相关《20149焊接冶金学——材料焊接性第3章(95页珍藏版)》请在金锄头文库上搜索。

1、第3章 合金结构钢的焊接,3.1 合金结构钢的分类和性能 合金结构钢是在碳素钢的基础上有目的地加入一种或几种合金元素的钢。常用的合金元素有:锰、硅、铬、镍、钼、钨、钒、钛、硼等。加入合金元素可使钢的性能产生预期的变化,如提高其强度,改善其韧性,或使其具有特殊的物理、化学性能,如耐热性和耐蚀性等。 3.1.1 合金结构钢的分类 合金结构钢的应用领域很广,种类繁多,可按化学成分、合金系统、组织状态、用途或使用性能等方面进行分类。例如: 1. 按合金元素总含量的多少分有: 1)低合合钢,一般w (Me)5; 2)中合金钢,w (Me)=510; 3)高合金钢,w (Me)10。,2. 按用途和性能分

2、有: 1)强度用钢 即通常所说的高强度钢。主要用于常规条件下要求能承受静载和动载的机械零件和工程结构,如压力容器、动力设备、工程机械、交通运输工具、桥梁、建筑结构、管道、船舶和海洋工程结构等。 它的主要性能是力学性能,合金元素的加入是为了保证足够的塑性和韧性的前提下,获得不同的强度等级。它可以按强度等级或供货热处理)状态进行分类。 按供货状态分,强度用钢大致分为热轧与正火钢、低碳调质钢和中碳调质钢等三类。各类的组织性能有其共同特点,且与焊接性密切相关。介绍如下: (1) 热轧及正火钢 屈服强度为294490MPa,在热轧或正火状态下使用,属于非热处理强化钢。包括微合金化控轧钢、抗层状撕裂的Z向

3、钢等。这类钢广泛应用于常温下工作的一些受力结构,如压力容器、动力设备、工程机械、桥梁、建筑结构和管线等。,(2) 低碳调质钢 屈服强度为490980MPa,在调质状态下供货使用,属于热处理强化钢。这类钢的特点是含碳量较低(一般碳的质量分数为0.22%以下),既有高的强度,又兼有良好的塑性和韧性,可以直接在调质状态下进行焊接,焊后不需进行调质处理。这类钢在焊接结构中得到了越来越广泛的应用,可用于大型工程机械、压力容器及舰船制造等。 (3) 中碳调质钢 屈服强度一般在8801176 MPa以上,钢中含碳量较高(碳的质量分数为0.25%0.5%),也属于热处理强化钢。它的淬硬性比低碳调质钢高得多,具

4、有很高的硬度和强度,但韧性相对较低,给焊接带来了很大的困难。这类钢常用于强度要求很高的产品或部件,如火箭发动机壳体、飞机起落架等。 2) 低中合金特殊用途钢 低中合金特殊用钢主要用于一些特定条件下工作的机械零件和工程结构。对其要求除了满足常规力学性能外,还必须适应特殊环境下工作的要求。根据对不同使用性能的要求,可分为:珠光体耐热钢、低温钢和低合金耐蚀钢等。,(1) 珠光体耐热钢 以Cr、Mo为基础的低中合金钢,随着工作温度的提高,还可加入V、W、Nb、B等合金元素,具有较好的高温强度和高温抗氧化性,主要用于工作温度在500600的高温设备,如热动力设备和化工设备等。 (2) 低温钢 大部分是一

5、些含Ni或无Ni的低合金钢,一般在正火或调质状态使用,主要用于各种低温装置(-40-196)和在严寒地区的一些工程结构,如液化石油气、天然气的储存容器等。与普通低合金钢相比,低温钢必须保证在相应的低温下具有足够高的低温韧性,对强度无特殊要求。 (3) 低合金耐蚀钢 除具有一般的力学性能外,必须具有耐腐蚀性能这一特殊要求。主要用于像大气、海水、石油化工等腐蚀介质中工作的各种机械设备和焊接结构。由于所处的介质不同,耐蚀钢的类型和成分也不同。耐蚀钢中应用最广泛的是耐大气和耐海水腐蚀用钢。,国内外常见的合金结构钢的牌号见表3-1。,3.1.2 合金结构钢的基本性能 1化学成分 低合金结构钢是在低碳钢基

6、础上(低碳钢的化学成分为:wC=0.10%0.25%,wSi0.3%,wMn=0.5%0.8%)添加一定量的合金元素构成的。碳是最能提高钢材强度的元素,但易于引起焊接淬硬及焊接裂纹,所以在保证强度的条件下,碳的加入量越少越好。低合金钢加入的元素有Mn、Si、Cr、Ni、Mo、V、Nb、B、Cu等,杂质元素P、S的含量要限制在较低的程度。 用于焊接结构的低中合金钢合金元素总的质量分数一般不超过10%。各种元素对合金结构钢下临界点温度的综合影响可用下述公式表示: A1=720+28wSi+5wCr+6wCo+3wTi5wMn10wNi3wV, (3-1) 由上述公式可见,Si、Cr、Co和Ti等元

7、素能提高下临界点A1的温度,而Mn、Ni和V则降低A1点温度。根据合,金元素对组织转变的影响可将其分成两组:一组以Ni元素为代表,称为Ni组元素(Ni、Mn、Co);另一组以Cr元素为代表,称为Cr组元素(Cr、Si、P、Al、Ti、V、Mo、W)。在-Fe中具有较大溶解度的元素促使区缩小,而在晶格中具有较大溶解度的元素则扩大区。各种合金元素的影响程度不仅取决于它的含量,还取决于同时存在的其他合金元素的性质和含量。 加入合金元素能细化晶粒,而且各种合金元素在不同程度上改变了钢的奥氏体转变动力学,直接影响钢的淬硬倾向。如C、Mn、Cr、Mo、V、W、Ni和Si等元素能提高钢的淬硬倾向,而Ti、N

8、b、Ta等碳化物形成元素则降低钢的淬硬倾向。 各种合金元素对结构钢的抗拉强度和屈服强度影响的定量测定数据如图3-1所示。合金元素对低合金钢屈服强度和抗拉强度的综合影响,可按下列经验公式进行计算,即:,s=122+274wC+82wMn+55wSi+54wCr+44wNi+78wCu +353wV+755wTi+540wP+30-2(h-5), MPa b=230+686wC+78wMn+90wSi+73wCr+33wNi+56wCu+314wV+529wTi+450wP+21-1.4(h-5), MPa 式中 h为板厚(mm)。 合金结构钢中,氮作为一种合金元素被广泛采用。氮在钢中的作用与碳相

9、似,当它溶解在铁中时,将扩大区。氮能与钢中的其他合金元素形成稳定的氮化物,这些氮化物往往以弥散的微粒分布,从而细化晶粒,提高钢的屈服点和抗脆断能力。氮的影响既决定于其含量,也决定于在钢中存在的其他合金元素的种类和数量。Al、Ti和V等合金元素对氮具有较高的亲和力,并能形成较稳定的氮化物。因此,为了充分发挥氮作为合金元素的作用,钢中必须同时加入Al、V和Ti等氮化物形成元素。,这些合金元素或者与Fe形成固溶体,或者形成碳化物(除Ti、Nb和Ta外),都产生了延迟奥氏体分解的作用并由此提高了钢的淬硬倾向。各种元素对钢的力学性能和工艺性能的影响,取决于它的含量和同时存在的其他合金元素。 热轧及正火条

10、件下,合金元素对塑性和韧性的影响与其强化作用相反,即强化效果越大,塑性和韧性的降低越多,当钢中合金元素的含量超出一定范围后会出现韧性的大幅度下降。因此,抗拉强度大于600MPa的高强钢一般都需进行调质处理。我国低碳调质钢的抗拉强度一般为6001300MPa,为了保证良好的综合性能和焊接性,要求钢中碳的质量分数不大于0.22%(实际上碳的质量分数在0.18%以下)。,此外,添加一些合金元素,如Mn、Cr、Ni、Mo、V、Nb、B、Cu等,主要是为了提高钢的淬透性和马氏体的回火稳定性。这些元素可以推迟珠光体和贝氏体的转变,使产生马氏体转变的临界冷却速率降低。低合金调质高强钢由于含碳量低,所以淬火后

11、得到低碳马氏体,而且发生“自回火”现象,脆性小,具有良好的焊接性。 国外研制的低碳调质钢一般含有较高的合金元素Ni和Cr,钢材强度级别越高,Ni、Cr含量也越高。如美国用于工程机械、压力容器的T-1钢,用于海军舰艇外壳的HY-80,以及用于潜艇、宇航业的HY100、HY-130等。20世纪六、七十年代我国发展了无Ni、Cr的低碳调质钢,用于工程机械、高压容器和水轮机壳体等。低碳调质钢的综合性能除了取决于化学成分外,主要是通过热处理保证具有良好的组织和力学性能。,2力学性能 合金结构钢的强度越高,屈服强度与抗拉强度之差也越小。屈服强度与抗拉强度之比称为屈强比(s /b)。钢材的强度越高,屈强比增

12、大。低碳钢的屈强比约为0.7左右,控轧钢板的屈强比约为0.700.85,800MPa级高强钢的屈强比约为0.95。 低合金高强钢的低温拉伸性能如图3-2a所示。温度下降时,钢材的抗拉强度升高,但韧性下降。一般-100以上时钢材强度变化较小,温度再低时,抗拉强度和屈服强度急剧升高,韧性急剧下降,当在液氮温度(-196)附近时,延伸率很小。低合金高强钢的使用温度多在-50以上,在此温度范围内高强钢的强度性能变化不大。 低合金高强钢高温时强度性能的变化如图3-2b所示。200以前强度缓慢下降,温度进一步升高时,强度开始上升,300附近达到最大值,350以上逐渐下降。钢材高温时的强度性能仍保持室温强度

13、的顺序,基本上不发生倒位现象。,缺口韧性是用于表示材料抵抗脆性破坏的一项指标。脆性破坏是在低应力条件下(一般是在屈服强度以下)发生的,多为瞬时破坏,是低合金钢焊接结构安全方面最值得注意的破坏现象。世界各国多采用却贝冲击吸收功作为缺口韧性的评价方法,采用10mm10mm55mm的长方形试样,在试样中央开深度2mm的V形缺口,尖端半径为0.25mm。逐渐改变试验温度做冲击试验,用试样破断时所需的能量(称为吸收能)及断口形貌(塑性断口和脆性断口)来评价钢材缺口韧性。 吸收能可以反映出某一温度范围韧性急剧变化的转变现象。当吸收能变小时,由塑性断口转变为脆性断口。脆性断口率为零时的吸收能称为“上平台能”

14、,上平台能一半时的温度称为韧脆转变温度(用VTrs表示)。钢材的韧脆转变温度越低,韧性越好。根据大量的脆性破坏事故案例调查的结果,许多国家建议采用冲击吸收功21J或48J时的温度作为V形缺口却贝韧性试验的特性值。,合金结构钢具有较高的强度和良好的塑性和韧性,采用不同的合金成分和热处理工艺,可以获得具有不同综合性能的低中合金结构钢。Mn的固溶强化作用很显著,wMn1.7%时可提高韧性、降低脆性转变温度,屈服强度提高约50,而脆性转变温度下降约20,如Q345(16Mn)为典型的固溶强化钢,屈服强度为345MPa、脆性转变温度低于40;Si虽然显著固溶强化但降低塑性、韧性,一般wSi0.6%;Ni

15、是惟一既固溶强化又同时提高韧性且大幅度降低脆性转变温度的元素,常用于低温钢。 V、Ti、Nb强烈形成碳化物,Al、V、Ti、Nb还形成氮化物,析出的微小VC、TiC、NbC及AlN、VN、TiN、Nb(C、N)产生明显的沉淀强化作用,在固溶强化的基础上屈服强度提高50100MPa,并保持了韧性。上述元素均是微量加入,故称为微合金化。微合金化元素还有B,主要作用是在晶界上阻止先共析铁素体生成及长大,从而改善韧性。,合金结构钢的强度级别不同,加入的合金元素及其含量也不同,成分设计既要满足使用性能要求又要考虑其经济性。抗拉强度为600MPa级的钢主要为Mn-Si系和在Mn-Si基础上加少量的Cr、N

16、i、Mo、V;700MPa级的钢主要为Mn-Si-Cr-Ni-Mo系,合金元素加入量较600MPa级的钢多些,另外还加入少量的V;800MPa级的钢主要为Mn-Si-Cr-Ni-Mo-Cu-V系,并加入一定量的B;1000MPa级的钢合金系列与800MPa级的钢基本相同,但合金元素加入量较高,尤其是为了保证韧性加入较多的Ni。 3显微组织 低合金结构钢为了获得满意的强度和韧性的组合,晶粒尺寸必须细小、均匀,而且应是等轴晶。经调质处理后的钢材具有较高的强度、韧性和良好焊接性,裂纹敏感性小,热影响区组织性能稳定。 低合金钢热影响区中的显微组织主要是低碳马氏体、贝氏体、M-A组元和珠光体类组织,导致具有不同的硬度、强度性能、塑性和韧性。几种典型组织(特别是贝氏体组织)对低合金钢强度和韧性的影响如图3-3所示。,低合金高强钢不同比例混合组织的维氏硬度和相应金相组织的显微硬度见表3-2。应指出,即使是同样的显微组织,

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 行业资料 > 其它行业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号