高等数学中极限问题解法详析

上传人:suns****4568 文档编号:59172640 上传时间:2018-11-04 格式:DOC 页数:18 大小:531.73KB
返回 下载 相关 举报
高等数学中极限问题解法详析_第1页
第1页 / 共18页
高等数学中极限问题解法详析_第2页
第2页 / 共18页
高等数学中极限问题解法详析_第3页
第3页 / 共18页
高等数学中极限问题解法详析_第4页
第4页 / 共18页
高等数学中极限问题解法详析_第5页
第5页 / 共18页
点击查看更多>>
资源描述

《高等数学中极限问题解法详析》由会员分享,可在线阅读,更多相关《高等数学中极限问题解法详析(18页珍藏版)》请在金锄头文库上搜索。

1、数学分析中极限的求法 摘要:本文主要归纳了数学分析中求极限的十四种方法, 1:利用两个准则求极限, 2:利用极限的四则运算性质求极限, 3:利用两个重要极限公式求极限, 4:利用单侧极限求极限,5:利用函数的连续性求极限, 6:利用无穷小量的性质求极限, 7:利用等价无穷小量代换求极限, 8:利用导数的定义求极限, 9:利用中值定理求极限, 10:利用洛必达法则求极限, 11:利用定积分求和式的极限,12:利用级数收敛的必要条件求极限, 13:利用泰勒展开式求极限, 14:利用换元法求极限。关键词: 夹逼准则, 单调有界准则, 无穷小量的性质, 洛必达法则, 中值定理, 定积分, 泰勒展开式,

2、 级数收敛的必要条件.极限是数学分析的基础,数学分析中的基本概念来表述,都可以用极限来描述。如函数yf(x)在处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。极限是研究数学分析的基本公具。极限是贯穿数学分析的一条主线。学好极限是从以下两方面着手。1:是考察所给函数是否存在极限。2:若函数否存在极限,则考虑如何计算此极限。本文主要是对第二个问题即在极限存在的条件下,如何去求极限进行综述。1:利用两个准则求极限。 (1)夹逼准则:若一正整数 N,当nN时,有且则有 . 利用夹逼准则求极限关键在于从的表达式中,通常通过放大或缩小的方法找出两

3、个有相同极限值的数列和 ,使得。例1 求的极限解:因为单调递减,所以存在最大项和最小项 则 又因为(2):单调有界准则:单调有界数列必有极限,而且极限唯一。 利用单调有界准则求极限,关键先要证明数列的存在,然后根据数列的通项递推公式求极限。 例:1 证明下列数列的极限存在,并求极限。 证明:从这个数列构造来看 显然是单调增加的。用归纳法可证。 又因为 所以得. 因为前面证明是单调增加的。 两端除以 得 因为则, 从而 即 是有界的。根据定理有极限,而且极限唯一。 令 则 则. 因为 解方程得 所以 2:利用极限的四则运算性质求极限 极限的四则运算性质:1:两收敛数列的和或积或差也收敛且和或积或

4、差的极限等于极限和的或积或差。 2:两收敛数列且作除数的数列的极限不为零,则商的极限等于极限的商。通常在这一类型的题中,一般都含有未定式不能直接进行极限的四则运算。首先对函数施行各种恒等变形。例如分之,分母分解因式,约去趋于零但不等于零的因式;分之,分母有理化消除未定式;通分化简;化无穷多项的和(或积)为有限项。例;求极限(1) (2)(3)(4) 已知 求解:(1) (2)(3)-1 (4) 因为 所以 3:利用两个重要极限公式求极限 两个极限公式 (1) (2) 在这一类型题中,一般也不能直接运用公式,需要恒等变形进行化简后才可以利用公式。 例:求下列函数的极限4 (1) (2) 解:(1

5、) 1(2) 14:利用单侧极限求极限 这种方法使用于求分段函数在分段点处的极限,首先必须考虑分段点的左、右极限,如果左、右极限都存在且相等,则函数在分界点处的极限存在,否则极限不存在。例:求 f(x)在x=0的左右极限 解:1 1 5:利用函数的连续性求极限这种方法适用于求复合函数的极限。如果 u=g(x) 在点连续 g()=,而y=f(u)在点连续,那么复合函数y=f(g(x)在点连续。即也就是说,极限号可以与符号f互换顺序。 例:求 解:令 ylnu, u 因为 lnu 在点 处连续 所以 16:利用无穷小量的性质求极限: 无穷小量的性质:无穷小量与有界量的乘积还是无穷小量。如果,g(x

6、)在某区间有界,那么.这种方法可以处理一个函数不存在但有界,和另一个函数的极限是零的极限的乘积的问题。 例:求 解: 因为 所以 07:利用等价无穷小量代换求极限: 等价无穷小量:当时,称y,z是等价无穷小量:记为 yz 在求极限过程中,往往可以把其中的无穷小量,或它的主要部分来代替。但是,不是乘除的情况,不一定能这样做。 例:求 解:88:利用导数的定义求极限 导数的定义:函数f(x)在附近有定义,则 如果存在,则此极限值就称函数 f(x)在点 的导数记为 .即在这种方法的运用过程中。首先要选好f(x)。然后把所求极限。表示成f(x)在定点的导数。 例:求 解:取f(x)= .则 9:利用中

7、值定理求极限: 1:微分中值定理:若函数 f(x) 满足 () 在 连续 .()在(a,b)可导;则在(a,b)内至少存在一点,使 例2:求 解: 2:积分中值定理:设函数f(x) 在闭区间 上连续;g(x) 在上不变号且可积,则在上至少有一点使得 例:求 解: 10:洛必达法则求极限: 洛必达法则只能对或型才可直接使用,其他待定型必须先化成这两种类型之一,然后再应用洛必达法则。洛必达法则只说明当 等于 A 时,那么也存在且等于A. 如果不存在时,并不能断定也不存在,只是这是不能用洛必达法则,而须用其他方法讨论 。 例1:(1) 求 (2)求 解:(1) 由 所以上述极限是待定型1(2) 它为

8、型 由对数恒等式可得 = 11:利用定积分求和式的极限 利用定积分求和式的极限时首先选好恰当的可积函数f(x)。把所求极限的和式表示成f(x)在某区间 上的待定分法(一般是等分)的积分和式的极限。 例:求 解:由于 可取函数 f(x)区间为上述和式恰好是 在 上n等分的积分和。 所以 12:利用级数收敛的必要条件求极限 利用级数收敛的必要条件:若级数收敛,则运用这个方法首先判定级数收敛,然后求出它的通项的极限 例: 求 解:设 则 = =01由比值判别法知收敛 由必要条件知013:利用泰勒展开式求极限 泰勒展开式:若 f(x)在x=0点有直到n+1 阶连续导数,那么 (其中在0与1之间) 例:

9、 解:泰勒展开式 于是- 所以14:换元法求极限: 当一个函数的解析式比较复杂或不便于观察时,可采用换元的方法加以变形,使之简化易求。 例:3 求 解:令 则 1附:各种求极限问题及解题方法1约去零因子求极限例1:求极限【说明】表明无限接近,但,所以这一零因子可以约去。【解】=42分子分母同除求极限例2:求极限【说明】型且分子分母都以多项式给出的极限,可通过分子分母同除来求。【解】【注】(1) 一般分子分母同除的最高次方;(2) 3分子(母)有理化求极限例3:求极限【说明】分子或分母有理化求极限,是通过有理化化去无理式。【解】例4:求极限【解】【注】本题除了使用分子有理化方法外,及时分离极限式

10、中的非零因子是解题的关键4应用两个重要极限求极限两个重要极限是和,第一个重要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。例5:求极限【说明】第二个重要极限主要搞清楚凑的步骤:先凑出,再凑,最后凑指数部分。【解】例6:(1);(2)已知,求。5用等价无穷小量代换求极限【说明】(1)常见等价无穷小有:当 时,;(2) 等价无穷小量代换,只能代换极限式中的因式;(3)此方法在各种求极限的方法中应作为首选。例7:求极限【解】 .例8:求极限【解】6用罗必塔法则求极限例9:求极限【说明】或型的极限,可通过罗必塔法则来求。【解】【注】许多变动上显的积分表示的极限,常用罗必塔法则求解例10:

11、设函数f(x)连续,且,求极限【解】 由于,于是 =7用对数恒等式求极限 例11:极限 【解】 =【注】对于型未定式的极限,也可用公式=因为例12:求极限.【解1】 原式 【解2】 原式 8利用Taylor公式求极限 例13 求极限 .【解】 , ; .例14 求极限.【解】 .9数列极限转化成函数极限求解例15:极限【说明】这是形式的的数列极限,由于数列极限不能使用罗必塔法则,若直接求有一定难度,若转化成函数极限,可通过7提供的方法结合罗必塔法则求解。【解】考虑辅助极限所以,10n项和数列极限问题n项和数列极限问题极限问题有两种处理方法(1)用定积分的定义把极限转化为定积分来计算;(2)利用两边夹法则求极限.例16:极限【说明】用定积分的定义把极限转化为定积分计算,是把看成0,1定积分。【解】原式例17:极限【说明】(1)该题遇上一题类似,但是不能凑成的形式,因而用两边夹法则求解;

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 其它相关文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号